Présentation

Article

1 - DOMAINES APPLICATIFS

2 - SÉRIES TEMPORELLES : PROCESSUS ALÉATOIRES ET RÉALISATIONS

  • 2.1 - C'est un processus aléatoire particulier
  • 2.2 - C'est une réalisation d'un processus aléatoire
  • 2.3 - Organisation du document

3 - TENDANCES ET FACTEURS SAISONNIERS

4 - COVARIANCE ET DENSITÉ SPECTRALE

5 - PROCESSUS ARMA

6 - PROCESSUS ARMA INTÉGRÉS

7 - PROCESSUS SARIMA ET À CORRÉLATION PÉRIODIQUE

8 - PROCESSUS GARCH

9 - EXEMPLE D'APPLICATION

10 - CONCLUSION, PERSPECTIVES

Article de référence | Réf : TE5220 v1

Processus GARCH
Séries temporelles

Auteur(s) : Michel PRENAT

Relu et validé le 06 janv. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les séries temporelles, ou séries chronologiques, se rencontrent dans un grand nombre de domaines d'application : finance et économétrie, médecine et biologie, sciences de la Terre et de l'Espace, traitement du signal, métrologie, etc. Cet article décrit les principaux types de séries temporelles et les techniques qui leur sont appliquées afin de les analyser. On cherche en général à les décrire et à en donner les propriétés par des modèles ou des "résumés" dont les éléments sont obtenus par un processus d'identification. On étudie ensuite comment de tels modèles ainsi élaborés sont utilisés pour des opérations de plus haut niveau. L'article se concentre sur les séries mono-variées (une seule quantité est observée au cours du temps), tout en présentant quelques ouvertures sur les séries multi-variées et les techniques applicables. Il s'appuie, d'une part sur des séries réelles, et d'autre part sur des séries simulées, par volonté didactique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Temporal series or chronological series

Temporal series, also called chronological series, can be found in various domains of application: finance and econometrics, medicine and biology, earth and space sciences, signal processing, metrology, etc. This article describes the main types of temporal series and the techniques used in order to analyze them. These series and their properties are generally described via models or "summaries" the elements of which are obtained trhough an identification process. The way in which such models are used for higher-level operations is then studied. This article focuses on univariate series (a single quantity is observed over time) whilst presenting certain information on multivariate series and the applicable techniques. For didactic purposes, it is based on real series and simulated ones.

Auteur(s)

  • Michel PRENAT : Directeur technique politique d'innovation – Thales Optronique - Professeur associé – Université Paris Sud

INTRODUCTION

Les séries chronologiques sont des séries d'observations d'une (ou plusieurs) quantité(s) au cours du temps. On parle, selon les cas, de séries uni-variées, ou de séries multi-variées. Cet article développe essentiellement les techniques relatives aux séries uni-variées, tout en faisant une incursion dans les séries multi-variées pour des problèmes particuliers. Pour les séries uni-variées, les observations appartiennent à l'ensemble des réels . Cependant, dans les cas où elles sont complexes (par exemple, le signal observé à la sortie d'un récepteur de radar), elles sont encore considérées comme uni-variées.

Les instants d'observations sont discrets, sans être nécessairement répartis de façon régulière. Parmi les techniques décrites dans cet article, dont les fondements supposent cette répartition régulière, certaines s'étendent aisément au cas non régulier, d'autres supposent des aménagements plus complexes.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

covariance   |   prediction   |   identification   |   stationarity   |   conditional distribution

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-te5220


Cet article fait partie de l’offre

Le traitement du signal et ses applications

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

8. Processus GARCH

Les processus GARCH (Generalized Autoregressive Conditionaly Heteroskedastic) se rencontrent essentiellement dans le domaine de l'économétrie (évolution des cours de bourse par exemple), auxquels cas ils sont applicables aux variations relatives (« return ») périodiques d'une quantité (un prix Pt par exemple) :

L'observation de telles séries suggère que des valeurs extrêmes (fortes ou faibles), prises par le processus dans une période donnée, ont des conséquences sur la variance (plus forte ou plus faible) du processus pour la suite (la notion de causalité prend ici un relief particulier), d'où l'idée (voir ) de créer des modèles qui rendent compte de ce phénomène.

Le terme « heteroskedastic », ou « hétéroschédastique » signifie que la variance est variable dans le sens suivant : dans les processus GARCH, la variance conditionnelle (c'est-à-dire compte tenu du passé) est elle-même une série temporelle dont la valeur, à un instant donné, dépend du passé du processus.

  • Quelques notions techniques nouvelles, ou tout du moins très peu abordées précédemment, vont être nécessaires pour aborder ce chapitre :

    • les processus GARCH constituent des séquences stationnaires décorrélées mais dépendantes ;

    • les propriétés statistiques conditionnelles devront être distinguées des propriétés statistiques non conditionnelles ;

    • quelques propriétés de séries multivariées seront évoquées.

  • Une autre nouveauté apportée par les modèles GARCH, par rapport à tous les...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le traitement du signal et ses applications

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Processus GARCH
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ALLAN (D.W.) -   Statistics of atomic frequency standards.  -  IEEE Proceedings, 54, p. 221-235 (1966).

  • (2) - AZENCOTT (R.), DACUNHA-CASTELLE (D.) -   Séries d'observations irregulières. Modélisation et prévision.  -  Masson (1984).

  • (3) - BISCAY (R.), LAVIELLE (M.), GONZALES (A.), CLARK (I.), VALDÉS (P.) -   Maximum a posteriori estimation of change points in the eeg.  -  International Journal of Bio-Medical Computing, 38, p. 189-196 (1995).

  • (4) - BROCKWELL (P.), DAVIS (R.) -   Time series : theory and methods.  -  Springer Series in Statistics, Springer, second edition (1991).

  • (5) - ENGLE (R.F.) -   Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation.  -  Econometrica, 50(4), p. 987-1007, juil. 1982.

  • (6) - GARDNER (W.A.), NAPOLITANO (A.), PAURA (L.) -   Cyclostationarity :...

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le traitement du signal et ses applications

(160 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS