Présentation

Article interactif

1 - HISTOIRE DES LOGIQUES

  • 1.1 - Époque égyptienne
  • 1.2 - Époque babylonienne
  • 1.3 - Antiquité grecque
  • 1.4 - Moyen Âge européen : la logique médiévale (476-1453)
  • 1.5 - La renaissance européenne (1453-1666)
  • 1.6 - La logique moderne (depuis 1666)
  • 1.7 - XIXe siècle et XXe siècle : la logique mathématique
  • 1.8 - Autres régions mondiales
  • 1.9 - Logiques classiques et logiques non classiques

2 - LANGAGES NATURELS ET FORMELS

  • 2.1 - Langages naturels
  • 2.2 - Langages formels
  • 2.3 - Constituants importants
  • 2.4 - Langage mathématique

3 - RAISONNEMENTS

  • 3.1 - Inférence
  • 3.2 - Thèse-antithèse-synthèse
  • 3.3 - Les différents modes de raisonnements
  • 3.4 - Propriétés des raisonnements

4 - LOIS DE LA PENSÉE ET PRINCIPES DE LA LOGIQUE

  • 4.1 - Les quatre grands principes philosophiques logiques de l’Antiquité grecque
  • 4.2 - Nouveaux principes classiques
  • 4.3 - Remises en cause

5 - SYSTÈMES LOGIQUES

  • 5.1 - Systèmes formels
  • 5.2 - Définition d’un système logique
  • 5.3 - Calculs formels et logiques
  • 5.4 - Sémantique d’un système logique
  • 5.5 - Conséquences logiques
  • 5.6 - Fragments, extensions, théories et traductions

6 - MÉTALOGIQUE

  • 6.1 - Métalogique
  • 6.2 - Métamathématique

7 - PROPRIÉTÉS MÉTALOGIQUES DES SYSTÈMES LOGIQUES

  • 7.1 - Déductibilité
  • 7.2 - Complétude
  • 7.3 - Cohérence
  • 7.4 - Compacité
  • 7.5 - Décidabilité
  • 7.6 - Validité
  • 7.7 - Correction

8 - THÉORIES MÉTALOGIQUES

  • 8.1 - Théorie de la démonstration
  • 8.2 - Théorie des modèles
  • 8.3 - Théorie de la démonstration et théorie des modèles
  • 8.4 - Théorie des types
  • 8.5 - Théories de la vérité
  • 8.6 - Théories du sens

9 - LOGIQUE ET DISCIPLINES ASSOCIÉES

  • 9.1 - Logique et philosophie
  • 9.2 - Logique et linguistique
  • 9.3 - Logique et mathématiques
  • 9.4 - Logique et physique
  • 9.5 - Logique et informatique
  • 9.6 - Logique et intelligence artificielle
  • 9.7 - Logique et automatique
  • 9.8 - Logique et droit
  • 9.9 - Logique et sciences humaines et sociales

10 - CONCLUSION

11 - GLOSSAIRE

Article de référence | Réf : AF88 v1

Théories métalogiques
Logique et métalogique

Auteur(s) : Jean-Charles PINOLI

Date de publication : 10 nov. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le terme « logique » est dérivé du grec ancien signifiant à la fois « discours » et « raisonnement ». En tant que domaine interdisciplinaire de la philosophie, de la linguistique, des mathématiques et plus récemment de l’informatique et surtout de l’intelligence artificielle, la logique traite de l’inférence, qui se définit comme une « opération cognitive », forme élémentaire de raisonnement passant de prémisses à une conclusion. Cet article, le premier d’une série de trois, présente des éléments sur les langages et sur les raisonnements, avant d’aborder les systèmes logiques, puis la métalogique. Un glossaire en annexe résume précisément les définitions de nombreuses notions.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Logic and Metalogic

The term "logic" is derived from ancient Greek meaning both "speech" and "reasoning". As an interdisciplinary field of philosophy, linguistics, mathematics, and more recently computer science and especially artificial intelligence, logic deals with inference, which is defined as a "cognitive operation", elementary form of reasoning from premises to a conclusion. This article, the first in a series of three, presents elements on languages ​​and on reasoning, before approaching logical systems, then metalogic. A glossary in the appendix precisely summarizes the definitions of many concepts.

Auteur(s)

  • Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France

INTRODUCTION

Cet article est le premier d’une série de trois, dont le deuxième portera sur la « logique des propositions et la logique des prédicats » [AF 89] et le troisième traitera des « logiques non classiques » [AF 91].

Le mot logique (logic) vient du grec ancien lógos signifiant à la fois « langage » et « raisonnement » qui aurait été utilisé pour la première fois par Xénocrate de Chalcédoine (396-314 av. J.-C.). Il désigne, dans une première approche, l’étude des règles formelles que doit respecter tout raisonnement rigoureux (et donc toute argumentation rigoureuse). Selon une signification plus moderne, la logique est l’étude de l’inférence, qui désigne un processus élémentaire du raisonnement, s’intéresse à la forme, et non au contenu, d’un argument rationnel (abstraction faite de tout processus psychologique ou biologique sous-jacent).

Constat (enseignement de la logique). En France la logique est peu enseignée, alors qu’elle est fondamentale dans de nombreux domaines scientifiques et de l’ingénierie (biologie, chimie, droit, informatique, intelligence artificielle, linguistique, mathématiques, médecine, philosophie, psychologie…) et de la vie courante en général.

La logique est considérée comme la science exacte la plus générale qui traite du contenant et non du contenu, puisqu’elle ne traite pas d’une « matière » particulière. Elle n’est pas une science fermée et achevée et elle ne cessera probablement jamais de se développer.

Constat (conceptions de la logique). L’histoire de la logique est marquée par les différentes approches philosophiques et même sur quel était son sujet (Aristote, Abélard, Kant, Hegel, Frege).

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

language   |   semantics   |   inference   |   reasoning   |   syntax

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af88


Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

8. Théories métalogiques

Les deux principales théories de la logique formelle sont :

  • la théorie de la démonstration (de nature syntactique) ;

  • la théorie des modèles (de nature sémantique).

8.1 Théorie de la démonstration

La théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (proof theory), est une branche de la logique mathématique fondée par le mathématicien allemand D. Hilbert au début du XXe siècle avec pour objectif de démontrer la cohérence des mathématiques. Cet objectif a été invalidé par le célèbre théorème d’incomplétude du mathématicien et logicien autrichien K. Gödel (1931). La théorie de la démonstration s’est tout de même développée, notamment grâce aux travaux des mathématiciens et logiciens J. Herbrand (1909-1945) et G. Gentzen (1908-1931).

L’approche structurale de la démonstration (structural proof theory) traite des propriétés spécifiques des systèmes de calcul logique, dont les trois principaux types sont : les systèmes de calcul de Hilbert, les systèmes de calcul par déduction naturelle, et les systèmes de calcul par séquents. Chacun de ces types fournis un système de calcul permettant une formalisation complète de la logique des propositions et de la logique des prédicats [AF 89], ainsi que de la plupart des logiques non classiques [AF 91].

La théorie de la démonstration a connu une renaissance spectaculaire au cours des années 1960 avec la découverte de la correspondance de Curry (1940, 1958) et Howard (1958, 1980) (i.e....

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Théories métalogiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ALLEN (C.), HAND (M.) -   Logic Primer,  -  Massachusetts Institute of Technology, 2nd ed., xvii + 191 pages (2001).

  • (2) - ALLIOT (J.M.), SCHIEX (T.), BRISSET (P.), GARCIA (F.) -   Intelligence artificielle & informatique théorique,  -  Cépadues, 2nde éd., 543 pages (2002).

  • (3) - BELNA (J.P.) -   Histoire de la logique,  -  Ellipses, 165 pages (2014).

  • (4) - BERNADET (M.) -   Introduction pratique aux logiques non classiques,  -  Hermann, vi + 203 pages (2011).

  • (5) - BILANIUK (S.) -   A Problem Course in Mathematical Logic,  -  Version 1.6, 154 pages (1994-2003).

  • (6) - BOCHEŃSKI (J.M.) -   A Precis of Mathematical Logic,  -  Springer, 100 pages (1959).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS