Présentation
EnglishRÉSUMÉ
Un système peut évoluer au cours du temps sous l'effet d'influences externes et internes, on peut définir alors une entrée et une sortie. Lorsque la sortie dépend linéairement de l'entrée, on parle de contrôle linéaire. L'idée de base des méthodes de ce type de contrôle est de déterminer une fonction objectif qui est linéaire et des contraintes qui sont des inégalités matricielles linéaires. Cet article présente les notions de base du contrôle linéaire, puis expose les différentes paramètres entre autres la contrôlabilité, l’observabilité, la représentation canonique, et la réduction de modèle, permettant d'aborder ce concept.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Claude BREZINSKI : Professeur à l’université des sciences et technologies de Lille
INTRODUCTION
De nombreux systèmes physiques évoluent au cours du temps sous l’effet d’influences externes et internes. Ils se comportent comme des boîtes noires : ils reçoivent une entrée, elle est ensuite transformée selon certaines lois (en général une équation différentielle) et l’on observe une sortie. Le problème consiste à réguler l’entrée, à la contrôler afin d’obtenir la sortie désirée. Le fait de modifier l’entrée selon la sortie obtenue s’appelle, en anglais, feedback. Ce mot est traduit en français par retour, ou bouclage, ou encore rétroaction. La théorie du contrôle étudie de tels systèmes dynamiques. Lorsque la sortie dépend linéairement de l’entrée, on parle de contrôle linéaire. Dans le cas contraire, il est non linéaire et ne sera pas traité ici.
L’ idée de base des méthodes de contrôle linéaire consiste à exprimer un problème de contrôle comme un problème d’optimisation avec une fonction objectif qui est linéaire et des contraintes qui sont des inégalités matricielles linéaires.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Contrôlabilité
La notion de contrôlabilité concerne la possibilité, pour un système, de passer d’un état initial à un état final donné grâce à un contrôle approprié. La définition mathématique exacte de cette notion est la suivante :
Définition 3 – On dit que le système [1]-[2] est complètement contrôlable au temps t 0 si, pour tout x(t 0) et pour tout x f , il existe t f , fini, et u : tels que x (t f ) = x f .
Cette définition signifie qu’il est possible de trouver une fonction u qui fait passer le système de l’état x(t 0) au temps initial t 0 à l’état x f au temps final t f . L’adverbe complètement indique que cette propriété est valable pour tous les vecteurs x(t 0) et tous les vecteurs x f . Puisque x(t 0) et x f peuvent être des vecteurs de base (toutes les composantes nulles, sauf une seule qui est égale à 1), tous les états sont donc contrôlables. En général, quand le système est complètement contrôlable, le contrôle u qui répond à la question n’est pas unique.
On a le résultat fondamental suivant :
Théorème 1 – Le système (1)-(2) est complètement contrôlable...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contrôlabilité