Claude BREZINSKI
Professeur - Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques Pures et Appliquées, - Université de Lille – Sciences et Technologies, Villeneuve d’Ascq, France
L’analyse numérique étudie les méthodes, appelées constructives, de résolution numérique des problèmes. Cet article débute par la présentation de la problématique posée par la programmation sur ordinateur des méthodes d’analyse numérique. Sont ensuite abordées successivement l’erreur d’interpolation, l’approche de la quadrature numérique, l’intégration des équations différentielles puis la théorie de l’approximation, qui constitue à elle seule une partie fondamentale de l’analyse numérique.
Découvrez les méthodes d’analyse numérique utilisées pour classer les pages du Web selon leur ordre de pertinence. L’algorithme PageRank est bâti afin d’utiliser la structure d’un graphe pour quantifier l’importance de chacun de ses nœuds.
Le but de cet article est de présenter les méthodes d'interpolation et d'approximation par des fonctions rationnelles. Elles sont utilisées pour représenter de manière approchée des fonctions connues, soit en un certain nombre de points, soit par le début de leur développement en série de Taylor. Est traité également le problème de l'accélération de la convergence de suites par des méthodes d'extrapolation rationnelle. Des exemples d'applications à divers problèmes d'analyse numérique sont fournis.
Il est souvent difficile de se faire une idée de l'intérêt des notions théoriques abordées dans le traité de Mathématiques pour l'ingénieur ou dans les livres d'analyse numérique et de mathématiques appliquées. Ces notions sont souvent présentées séparément et l'on a du mal à voir comment elles sont reliées . Comme dans d'autres domaines des mathématiques, l'analyse fonctionnelle a permis d'unifier un certain nombre de concepts, de problèmes et de méthodes de l'analyse numérique jusque-là sans liens ou, tout au moins, de leur donner une base commune. De l'analyse fonctionnelle jusqu'aux applications, on comprend comment tout se tient, tout s'enchaîne.
Un système peut évoluer au cours du temps sous l'effet d'influences externes et internes, on peut définir alors une entrée et une sortie. Lorsque la sortie dépend linéairement de l'entrée, on parle de contrôle linéaire. L'idée de base des méthodes de ce type de contrôle est de déterminer une fonction objectif qui est linéaire et des contraintes qui sont des inégalités matricielles linéaires. Cet article présente les notions de base du contrôle linéaire, puis expose les différentes paramètres entre autres la contrôlabilité, l’observabilité, la représentation canonique, et la réduction de modèle, permettant d'aborder ce concept.
Cet article est consacré à l’algèbre numérique linéaire et non linéaire. Sont exposées dans un premier temps les méthodes de calcul des racines d’une équation non linéaire à une inconnue, puis celles d’un polynôme, pour conduire à la résolution d’équations non linéaires. Sont abordées ensuite les méthodes numériques pour résoudre les équations linéaires, les directes comme les itératives. Pour terminer, est traité le calcul des valeurs et des vecteurs propres d’une matrice par des méthodes itératives.