Article | REF: IN405 V1

Phosphine redox catalysis

Authors: Charlotte LORTON, Arnaud VOITURiEZ

Publication date: March 10, 2021

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

In organic chemistry, for the formation of carbon-carbon and carbon-heteroatom bonds, many reactions require the use of a large quantity of phosphine. If they are efficient, these reactions are not atom economic and their purifications are sometimes made very difficult because of the concomitant formation of phosphine oxide. In this article, redox P(III)/P(V) catalysis processes are developed to reduce the amount of phosphine, limit waste generation and facilitate product purification. In addition, thanks to the use of chiral phosphines, it is possible to develop asymmetric catalysis reactions.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHORS

  • Charlotte LORTON: Doctoral student at Université Paris-Saclay - ICSN-CNRS, Gif-sur-Yvette, France

  • Arnaud VOITURiEZ: CNRS Research Director - ICSN-CNRS, Gif-sur-Yvette, France

 INTRODUCTION

Phosphines play a vital role as promoters in many transformations classically used in organic chemistry, in which the phosphine is usually oxidized (Wittig, Mitsunobu, Staudinger reactions, etc.). While these reactions are highly efficient and used daily in academic research laboratories and industry for the formation of carbon-carbon and carbon-heteroatom bonds, they also generate large quantities of chemical waste, notably phosphine oxide. This by-product often complicates the purification stage. To reduce the amount of phosphine used, several researchers around the world have developed P(III)/P(V) redox catalytic processes involving in situ regeneration of trivalent phosphine. Silanes, which can also be waste products from the silicone industry, are used as reducing agents. So it is now possible to move towards a more atom-efficient chemistry, and thereby reduce the environmental impact and energy demand of certain chemical reactions. In this article, after detailing the first catalytic Wittig reaction to phosphine, all the operating conditions required for a successful transformation are outlined. Subsequently, several redox catalytic processes using phosphines are described and presented by major class of reactions: Wittig olefination and its derivatives, Mitsunobu (nucleophilic substitution on an alcohol), Appel halogenation, Staudinger (transformation of an azide into an amine or formation of amides). Examples of organic synthesis, including the total synthesis of natural products such as (S)-vasicinone and dichrocephones A and B, are presented. Finally, in cases where the products formed have stereogenic centers, it is possible to use a small amount of chiral phosphines, and thus obtain optically active products by asymmetric catalysis, including chiral cyclobutenes and complex tricyclic nitrogen compounds.

At the end of the article, readers will find a glossary and a table of the notations used.

Key points

Field: Catalysis / Green chemistry

Degree of technology diffusion: Emergence

Technologies involved: Organocatalysis, asymmetric catalysis

Applications: Chemicals

Key French players: A. Voituriez (CNRS, Université Paris-Saclay)

Other international players: O. Kwon (UCLA, USA), T. Werner (University of Rostock, Germany), C. J. O'Brien (ChemTank Ltd, Ireland), R. M. Denton (University of Nottingham, UK), F. L. van Delft (Radboud University, Netherlands), J. Mecinović (University of Southern Denmark), A. Radosevich (MIT, USA)

Contact: [email protected]

https://icsn.cnrs.fr/cv/voituriez

...
You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

KEYWORDS

catalysis   |   organic synthesis   |   phosphine   |   chirality


This article is included in

Green chemistry

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Redox catalysis by phosphines