Présentation

Article

1 - ANALYSE EXPLORATOIRE D'UNE SÉRIE TEMPORELLE

2 - SÉRIES STATIONNAIRES

3 - MODÈLES ARIMA

4 - LISSAGE EXPONENTIEL

5 - MODÈLES ARMAX

6 - ANNEXE. NOTIONS SUR LA RÉGRESSION LINÉAIRE

Article de référence | Réf : AF614 v1

Analyse exploratoire d'une série temporelle
Séries temporelles

Auteur(s) : Yves ARAGON

Date de publication : 10 avr. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L'observation d’un phénomène sur un intervalle de temps constitue une série temporelle. Cet article est consacré aux suites indicées régulièrement par le temps. Il expose comment explorer une série et quels types de graphique choisir pour renseigner sur sa structure, ou guider sa modélisation. Les notions de stationnarité et les différentes formes de non-stationnarité sont définies. Une grande place est faite aux modèles ARIMA très souvent présents dans les séries à différentes étapes de leur modélisation. Les problématiques de régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement sont également détaillées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The observance of the phenomenon within a given time interval constitutes a time series. This article is dedicated to regular time series. It explains how to explore a series and what types of graphs to choose in order to illustrate its structure or guide its modeling. The notions of stationarity and the various forms of non-stationarity are defined. It particularly focuses on the ARIMA models which are very often present in the various stages of the modeling of series. The issues of the linear regression of a variable on other variables and the adjustment error dynamics are also detailed.

Auteur(s)

  • Yves ARAGON : Professeur émérite à l'Université de Toulouse 1 (Sciences sociales) - Coresponsable pédagogique du Master « Statistique et économétrie » FOAD

INTRODUCTION

Si un phénomène se déroule dans le temps, on peut vouloir le prédire, en comprendre la dynamique et comprendre les liens qu'il a avec un autre phénomène. Ces objectifs sont souvent complémentaires. L'observation du phénomène sur un intervalle de temps constitue une série temporelle. Dans ce dossier, nous voyons d'abord comment explorer une série puis quels graphiques peuvent nous renseigner sur sa structure, nous guider pour sa modélisation. Ensuite, nous définissons la stationnarité et des modèles classiques de série, les modèles ARIMA. L'estimation de tels modèles et leur validation sont illustrées sur des exemples. Nous envisageons différentes formes de non-stationnarité et la façon de les prendre en compte. Enfin, comme un phénomène est souvent dépendant d'un autre phénomène, nous montrons comment combiner la régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement. Même si beaucoup d'autres modèles sont utiles pour décrire les séries temporelles, les modèles ARIMA se retrouvent très souvent dans les séries à différentes étapes de leur modélisation. Des rappels et des compléments sur la régression linéaire figurent en annexe.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af614


Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Analyse exploratoire d'une série temporelle

Les séries temporelles que l'on considère ici sont des suites d'observations indicées régulièrement par le temps, par exemple, mesures toutes les heures, tous les mois... Les séries temporelles apparaissent souvent en contrôle de fabrication, quand on mesure l'activité industrielle ou dans les mesures de phénomènes physiques.

Pour beaucoup de séries, on rencontre une ou plusieurs des formes suivantes de dépendance par rapport au temps :

  • le niveau moyen dépend du temps (on dit alors que la série a une tendance ou un trend) ;

  • les valeurs sont corrélées temporellement (on parle d'autocorrélation) ;

  • la série montre un comportement périodique plus ou moins marqué (on est en présence de saisonnalité).

La dépendance par rapport au temps empêche de pouvoir considérer que les observations sont i.i.d. (indépendantes identiquement distribuées). Mais cette dépendance peut être exploitée pour prédire la valeur de la série à une date future. Suivant le ou les aspects repérés par une analyse exploratoire de la série et les objectifs que l'on poursuit, il faut mettre en œuvre des techniques différentes.

Nous examinons quelques techniques exploratoires pour évaluer une telle dépendance.

1.1 Graphiques

Soit (yt, t = 1, ..., T), une série observée. Quelques graphiques de base permettent de comprendre s'il y a dépendance par rapport au temps ou si la série peut être traitée comme une suite d'observations indépendantes.

Chronogramme (line plot)

On porte en abscisse le temps et en ordonnée la valeur de la série en liant les points : on dessine les points (t, yt), t = 1, ..., T.

Considérons la population des États-Unis, en millions d'habitants, mesurée à intervalle de 10 ans de 1790 à 1970 (série disponible dans R : data (popus)) . On a reporté figure 1 la série et les valeurs ajustées par MCO (moindres carrés ordinaires, cf. § 6.1...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Analyse exploratoire d'une série temporelle
Sommaire
Sommaire

1 À lire également dans nos bases

MELEARD (S). – Probabilités - Concepts fondamentaux [AF 166] Mathématiques pour l'ingénieur 04/2001.

CHEZE (N.). – Statistique inférentielle - Estimation [AF 168] Mathématiques pour l'ingénieur 10/2003.

CHEZE (N.). – Statistique descriptive - Traitement des données [AF 167] Mathématiques pour l'ingénieur 10/2002.

FOUQUE (J.-P.). – Calcul des probabilités - concepts et résultats de base  [A 560] Archives analyse/mesure 05/1993.

HAUT DE PAGE

2 Outils logiciels

SAS – Statistical Analysis System. [langage de commande] version 6 SAS Institute Inc.  http://www.sas.com

R – A language and environment for statistical computing [logiciel libre]  http://www.r-project.org

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS