Présentation
RÉSUMÉ
L'observation d’un phénomène sur un intervalle de temps constitue une série temporelle. Cet article est consacré aux suites indicées régulièrement par le temps. Il expose comment explorer une série et quels types de graphique choisir pour renseigner sur sa structure, ou guider sa modélisation. Les notions de stationnarité et les différentes formes de non-stationnarité sont définies. Une grande place est faite aux modèles ARIMA très souvent présents dans les séries à différentes étapes de leur modélisation. Les problématiques de régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement sont également détaillées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The observance of the phenomenon within a given time interval constitutes a time series. This article is dedicated to regular time series. It explains how to explore a series and what types of graphs to choose in order to illustrate its structure or guide its modeling. The notions of stationarity and the various forms of non-stationarity are defined. It particularly focuses on the ARIMA models which are very often present in the various stages of the modeling of series. The issues of the linear regression of a variable on other variables and the adjustment error dynamics are also detailed.
Auteur(s)
-
Yves ARAGON : Professeur émérite à l'Université de Toulouse 1 (Sciences sociales) - Coresponsable pédagogique du Master « Statistique et économétrie » FOAD
INTRODUCTION
Si un phénomène se déroule dans le temps, on peut vouloir le prédire, en comprendre la dynamique et comprendre les liens qu'il a avec un autre phénomène. Ces objectifs sont souvent complémentaires. L'observation du phénomène sur un intervalle de temps constitue une série temporelle. Dans ce dossier, nous voyons d'abord comment explorer une série puis quels graphiques peuvent nous renseigner sur sa structure, nous guider pour sa modélisation. Ensuite, nous définissons la stationnarité et des modèles classiques de série, les modèles ARIMA. L'estimation de tels modèles et leur validation sont illustrées sur des exemples. Nous envisageons différentes formes de non-stationnarité et la façon de les prendre en compte. Enfin, comme un phénomène est souvent dépendant d'un autre phénomène, nous montrons comment combiner la régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement. Même si beaucoup d'autres modèles sont utiles pour décrire les séries temporelles, les modèles ARIMA se retrouvent très souvent dans les séries à différentes étapes de leur modélisation. Des rappels et des compléments sur la régression linéaire figurent en annexe.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Annexe. Notions sur la régression linéaire
6.1 Cadre général
Exemple
Considérons 25 observations de la production (shipment) de pâte à papier, en millions de tonnes, et de son prix (price) sur le marché mondial, en dollar par tonne, données disponibles dans le package fma de R. Le graphique de la production y en fonction du prix x (figure 17) montre une relation négative. Une modélisation de la dépendance de y par rapport à x permet notamment d'avoir une expression synthétique de cette dépendance, par exemple pour évaluer l'augmentation de production quand le prix chute d'une unité. Le dossier Statistique descriptive. Traitement des données contient une approche descriptive de cette question alors qu'ici l'approche est inférentielle.
-
Modélisation
La situation générale est la suivante. On dispose de n observations appariées . Le nuage de ces points suggère une relation linéaire en moyenne. Ce que l'on exprime par :
avec ui erreur, β paramètres à déterminer d'après les données.
On peut estimer l'équation de la droite par la méthode des moindres carrés ordinaires (MCO).
Principe des MCO. Étant donné des valeurs particulières b0 et b1 de β 0 et β1, les valeurs ajustées et les résidus de l'ajustement sont respectivement :
Dans la méthode des MCO, on retient les valeurs b0 et b1 qui minimisent la somme des carrés des résidus :
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Annexe. Notions sur la régression linéaire
1 À lire également dans nos bases
MELEARD (S). – Probabilités - Concepts fondamentaux [AF 166] Mathématiques pour l'ingénieur 04/2001.
CHEZE (N.). – Statistique inférentielle - Estimation [AF 168] Mathématiques pour l'ingénieur 10/2003.
CHEZE (N.). – Statistique descriptive - Traitement des données [AF 167] Mathématiques pour l'ingénieur 10/2002.
FOUQUE (J.-P.). – Calcul des probabilités - concepts et résultats de base [A 560] Archives analyse/mesure 05/1993.
HAUT DE PAGE
SAS – Statistical Analysis System. [langage de commande] version 6 SAS Institute Inc. http://www.sas.com
R – A language and environment for statistical computing [logiciel libre] http://www.r-project.org
HAUT DE PAGECet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive