Présentation
RÉSUMÉ
L'observation d’un phénomène sur un intervalle de temps constitue une série temporelle. Cet article est consacré aux suites indicées régulièrement par le temps. Il expose comment explorer une série et quels types de graphique choisir pour renseigner sur sa structure, ou guider sa modélisation. Les notions de stationnarité et les différentes formes de non-stationnarité sont définies. Une grande place est faite aux modèles ARIMA très souvent présents dans les séries à différentes étapes de leur modélisation. Les problématiques de régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement sont également détaillées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Yves ARAGON : Professeur émérite à l'Université de Toulouse 1 (Sciences sociales) - Coresponsable pédagogique du Master « Statistique et économétrie » FOAD
INTRODUCTION
Si un phénomène se déroule dans le temps, on peut vouloir le prédire, en comprendre la dynamique et comprendre les liens qu'il a avec un autre phénomène. Ces objectifs sont souvent complémentaires. L'observation du phénomène sur un intervalle de temps constitue une série temporelle. Dans ce dossier, nous voyons d'abord comment explorer une série puis quels graphiques peuvent nous renseigner sur sa structure, nous guider pour sa modélisation. Ensuite, nous définissons la stationnarité et des modèles classiques de série, les modèles ARIMA. L'estimation de tels modèles et leur validation sont illustrées sur des exemples. Nous envisageons différentes formes de non-stationnarité et la façon de les prendre en compte. Enfin, comme un phénomène est souvent dépendant d'un autre phénomène, nous montrons comment combiner la régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement. Même si beaucoup d'autres modèles sont utiles pour décrire les séries temporelles, les modèles ARIMA se retrouvent très souvent dans les séries à différentes étapes de leur modélisation. Des rappels et des compléments sur la régression linéaire figurent en annexe.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Modèles ARMAX
Nous synthétisons ici ce que nous avons vu au travers de l'exemple de la consommation d'électricité. On dispose d'une série temporelle yt. Son niveau moyen dépend linéairement de séries explicatives x t = [xt1, ..., xtK] indépendantes du phénomène. Un ajustement linéaire par MCO de yt sur xt, voir équations (47) et encadre 7 :
donne des résidus ût qui présentent une autocorrélation significative et sont stationnaires. On cherche donc un modèle de la forme
On identifie la structure de ut sur , à savoir les ordres (p, q) et éventuellement (P,Q)s du modèle ARMA de l'erreur, puis on injecte cette information dans l'équation (43) pour faire une estimation par moindres carrés généralisés (l'estimateur est défini formule ) ou par maximum de vraisemblance de tous les paramètres. Cette estimation obtenue, on vérifie la blancheur du résidu et la significativité de chaque coefficient. L'abréviation ARMAX indique que le modèle comporte une composante explicative X et une erreur ARMA.
-
Prévision de yt à l'horizon h
La série à prédire est
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Modèles ARMAX
1 À lire également dans nos bases
MELEARD (S). – Probabilités - Concepts fondamentaux [AF 166] Mathématiques pour l'ingénieur 04/2001.
CHEZE (N.). – Statistique inférentielle - Estimation [AF 168] Mathématiques pour l'ingénieur 10/2003.
CHEZE (N.). – Statistique descriptive - Traitement des données [AF 167] Mathématiques pour l'ingénieur 10/2002.
FOUQUE (J.-P.). – Calcul des probabilités - concepts et résultats de base [A 560] Archives analyse/mesure 05/1993.
HAUT DE PAGE
SAS – Statistical Analysis System. [langage de commande] version 6 SAS Institute Inc. http://www.sas.com
R – A language and environment for statistical computing [logiciel libre] http://www.r-project.org
HAUT DE PAGECet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive