Présentation

Article

1 - ANALYSE EXPLORATOIRE D'UNE SÉRIE TEMPORELLE

2 - SÉRIES STATIONNAIRES

3 - MODÈLES ARIMA

4 - LISSAGE EXPONENTIEL

5 - MODÈLES ARMAX

6 - ANNEXE. NOTIONS SUR LA RÉGRESSION LINÉAIRE

Article de référence | Réf : AF614 v1

Modèles ARMAX
Séries temporelles

Auteur(s) : Yves ARAGON

Date de publication : 10 avr. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L'observation d’un phénomène sur un intervalle de temps constitue une série temporelle. Cet article est consacré aux suites indicées régulièrement par le temps. Il expose comment explorer une série et quels types de graphique choisir pour renseigner sur sa structure, ou guider sa modélisation. Les notions de stationnarité et les différentes formes de non-stationnarité sont définies. Une grande place est faite aux modèles ARIMA très souvent présents dans les séries à différentes étapes de leur modélisation. Les problématiques de régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement sont également détaillées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Yves ARAGON : Professeur émérite à l'Université de Toulouse 1 (Sciences sociales) - Coresponsable pédagogique du Master « Statistique et économétrie » FOAD

INTRODUCTION

Si un phénomène se déroule dans le temps, on peut vouloir le prédire, en comprendre la dynamique et comprendre les liens qu'il a avec un autre phénomène. Ces objectifs sont souvent complémentaires. L'observation du phénomène sur un intervalle de temps constitue une série temporelle. Dans ce dossier, nous voyons d'abord comment explorer une série puis quels graphiques peuvent nous renseigner sur sa structure, nous guider pour sa modélisation. Ensuite, nous définissons la stationnarité et des modèles classiques de série, les modèles ARIMA. L'estimation de tels modèles et leur validation sont illustrées sur des exemples. Nous envisageons différentes formes de non-stationnarité et la façon de les prendre en compte. Enfin, comme un phénomène est souvent dépendant d'un autre phénomène, nous montrons comment combiner la régression linéaire d'une variable sur d'autres variables et la dynamique de l'erreur d'ajustement. Même si beaucoup d'autres modèles sont utiles pour décrire les séries temporelles, les modèles ARIMA se retrouvent très souvent dans les séries à différentes étapes de leur modélisation. Des rappels et des compléments sur la régression linéaire figurent en annexe.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af614


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

5. Modèles ARMAX

Nous synthétisons ici ce que nous avons vu au travers de l'exemple de la consommation d'électricité. On dispose d'une série temporelle yt. Son niveau moyen dépend linéairement de séries explicatives x t = [xt1, ..., xtK] indépendantes du phénomène. Un ajustement linéaire par MCO de yt sur xt, voir équations (47) et encadre 7 :

donne des résidus ût qui présentent une autocorrélation significative et sont stationnaires. On cherche donc un modèle de la forme

( 43 )

On identifie la structure de ut sur , à savoir les ordres (p, q) et éventuellement (P,Q)s du modèle ARMA de l'erreur, puis on injecte cette information dans l'équation (43) pour faire une estimation par moindres carrés généralisés (l'estimateur est défini formule ) ou par maximum de vraisemblance de tous les paramètres. Cette estimation obtenue, on vérifie la blancheur du résidu et la significativité de chaque coefficient. L'abréviation ARMAX indique que le modèle comporte une composante explicative X et une erreur ARMA.

  • Prévision de yt à l'horizon h

    La série à prédire est

    ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modèles ARMAX
Sommaire
Sommaire

1 À lire également dans nos bases

MELEARD (S). – Probabilités - Concepts fondamentaux [AF 166] Mathématiques pour l'ingénieur 04/2001.

CHEZE (N.). – Statistique inférentielle - Estimation [AF 168] Mathématiques pour l'ingénieur 10/2003.

CHEZE (N.). – Statistique descriptive - Traitement des données [AF 167] Mathématiques pour l'ingénieur 10/2002.

FOUQUE (J.-P.). – Calcul des probabilités - concepts et résultats de base  [A 560] Archives analyse/mesure 05/1993.

HAUT DE PAGE

2 Outils logiciels

SAS – Statistical Analysis System. [langage de commande] version 6 SAS Institute Inc.  http://www.sas.com

R – A language and environment for statistical computing [logiciel libre]  http://www.r-project.org

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS