Présentation
EnglishRÉSUMÉ
La théorie des ensembles ordonnés est une sous-branche de la théorie des ensembles qui traite du concept d’ordre en utilisant les relations binaires. Les notions d’ordre sont présentes partout en mathématiques et dans de nombreuses autres disciplines scientifiques, ainsi que dans les domaines variés de l’ingénierie. La première partie de cet article porte sur les différents types de relations d’ordre conduisant aux espaces, sur leurs éléments remarquables et sous-ensembles particuliers, et les applications entre espaces ordonnés. La deuxième partie porte sur les collections de sous-ensembles d’un ensemble ambiant donné en présentant les principales propriétés, puis les catégories de collections les plus utilisées. Les notions présentées sont illustrées par des exemples et contre-exemples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France
INTRODUCTION
La théorie des ensembles ordonnés est une sous-branche de la théorie des ensembles qui traite du concept d’ordre en utilisant les relations binaires. Les notions d’ordre sont présentes partout en mathématiques et dans de nombreuses autres disciplines scientifiques, ainsi que dans les domaines variés de l’ingénierie. La première partie de cet article porte sur les différents types de relations d’ordre conduisant aux espaces ordonnés, sur leurs éléments remarquables et sous-ensembles particuliers, et les applications entre espaces ordonnés. La deuxième partie porte sur les collections de sous-ensembles d’un ensemble ambiant donné en présentant les principales propriétés, puis les catégories de collections les plus utilisées. Les notions présentées sont illustrées par des exemples et contre-exemples.
Préambule
La théorie des ensembles ordonnés (Ordered Set Theory) est une sous-branche de la théorie des ensembles (Set Theory) [AF 180].
La définition d’un ensemble partiellement ordonné a été clairement formulée par F. Hausdorff (1914), même si les axiomes qui apparaissent dans la définition d’une relation d’ordre avaient été considérées préalablement par G. Leibniz (vers 1690). Une définition précise d’un ensemble totalement ordonné a été publiée par G. Cantor (1895).
La première structure de treillis est apparue implicitement au milieu du XIXe siècle sous la forme d’algèbres booléennes (G. Boole, 1847), puis vint l’utilisation des treillis dans l’approche algébrique en théorie des nombres par R. Dedekind (1894, 1897).
Les plus grands mérites dans les premiers développements conséquents de la théorie des treillis (lattice theory) reviennent à G. Birkhoff (1933, 1940, 1948).
MOTS-CLÉS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
12. Filtres de sous-ensembles
Dans un ensemble E non vide, les filtres de sous-ensembles sont exactement les filtres dans le sens de la théorie des ensembles ordonnés, où la relation d’ordre pertinente est définie par l’inclusion ensembliste .
12.1 Filtres
Définition (filtre de sous-ensembles (Cartan (1937)). Soit E un ensemble non vide. Un filtre de sous-ensembles (subset filter) de E, notée , est une pile de sous-ensembles de E non vide satisfaisant l’axiome (p. 73 de ) :
Le filtre de sous-ensembles de E est dit propre (proper subset filter) s’il satisfait de plus l’axiome (F A).
Ainsi, un filtre de sous-ensembles d’un ensemble E non vide est un upperset de dirigé inférieurement pour l’inclusion ensembliste .
La classe de tous les filtres de sous-ensembles (resp. propres) d’un ensemble E non vide est notée (resp. ...?xml>?xml>
?xml>?xml>TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Filtres de sous-ensembles