Présentation
En anglaisRÉSUMÉ
La théorie des ensembles ordonnés est une sous-branche de la théorie des ensembles qui traite du concept d’ordre en utilisant les relations binaires. Les notions d’ordre sont présentes partout en mathématiques et dans de nombreuses autres disciplines scientifiques, ainsi que dans les domaines variés de l’ingénierie. La première partie de cet article porte sur les différents types de relations d’ordre conduisant aux espaces, sur leurs éléments remarquables et sous-ensembles particuliers, et les applications entre espaces ordonnés. La deuxième partie porte sur les collections de sous-ensembles d’un ensemble ambiant donné en présentant les principales propriétés, puis les catégories de collections les plus utilisées. Les notions présentées sont illustrées par des exemples et contre-exemples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The theory of ordered sets is a sub-branch of the set theory that deals with the concept of order using the binary relations. The notions of order are present everywhere in mathematics and in many other scientific disciplines, as well as in the fields of engineering. The first part of this article covers the different types of order relations leading to the ordered spaces, on their particular elements and special subsets, the lattices (complete, bounded, distributive...) and applications between ordered spaces. The second part focuses on collections of subsets of a given ambient set by presenting the main properties, then the most used categories of collections. The notions are illustrated by examples and counter-examples.
Auteur(s)
-
Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France
INTRODUCTION
La théorie des ensembles ordonnés est une sous-branche de la théorie des ensembles qui traite du concept d’ordre en utilisant les relations binaires. Les notions d’ordre sont présentes partout en mathématiques et dans de nombreuses autres disciplines scientifiques, ainsi que dans les domaines variés de l’ingénierie. La première partie de cet article porte sur les différents types de relations d’ordre conduisant aux espaces ordonnés, sur leurs éléments remarquables et sous-ensembles particuliers, et les applications entre espaces ordonnés. La deuxième partie porte sur les collections de sous-ensembles d’un ensemble ambiant donné en présentant les principales propriétés, puis les catégories de collections les plus utilisées. Les notions présentées sont illustrées par des exemples et contre-exemples.
Préambule
La théorie des ensembles ordonnés (Ordered Set Theory) est une sous-branche de la théorie des ensembles (Set Theory) [AF 180].
La définition d’un ensemble partiellement ordonné a été clairement formulée par F. Hausdorff (1914), même si les axiomes qui apparaissent dans la définition d’une relation d’ordre avaient été considérées préalablement par G. Leibniz (vers 1690). Une définition précise d’un ensemble totalement ordonné a été publiée par G. Cantor (1895).
La première structure de treillis est apparue implicitement au milieu du XIXe siècle sous la forme d’algèbres booléennes (G. Boole, 1847), puis vint l’utilisation des treillis dans l’approche algébrique en théorie des nombres par R. Dedekind (1894, 1897).
Les plus grands mérites dans les premiers développements conséquents de la théorie des treillis (lattice theory) reviennent à G. Birkhoff (1933, 1940, 1948).
MOTS-CLÉS
KEYWORDS
set theory | order relation | lattices | stacks
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
18. Diversité des champs applicatifs
Les quelques domaines suivants illustrent parmi tant d’autres la diversité des champs applicatifs.
18.1 Théorie des espaces vectoriels ordonnés
La théorie des espaces ordonnés (ordered vector spaces) traite des espaces vectoriels équipés d’une relation d’ordre compatible avec les opérations vectorielles, dont notamment les treillis de Riesz ou les treillis de Banach. Cette théorie tient un rôle important en analyse fonctionnelle et notamment en théorie des opérateurs positifs.
HAUT DE PAGE18.2 Théorie des ensembles approximatifs
La théorie des ensembles approximatifs (rough set theory) est un formalisme mathématique proposé par Z. Pawlak (1981), dans lequel un sous-ensemble d’un ensemble ambient est approché par une paire de deux sous-ensembles : une approximation inférieure et une approximation supérieure.
HAUT DE PAGE18.3 Théorie des domaines
La théorie des domaines (domain theory) (D. Scott, 1960) est une branche spécifique de la théorie des ensembles ordonnés (les domaines sont des ensembles partiellement ordonnés) , dont le principal champ d’application se situe en informatique théorique, comme cadre nécessaire à la définition d’une sémantique dénotationnelle du lambda-calcul.
HAUT DE PAGE18.4 Théorie de la convergence
La théorie de la convergence (convergence theory) traite de la convergence des suites d’éléments, de points de sous-ensembles, de fonctions… L’idée de prendre la notion de limite de suites (dénombrables) comme primitive pour définir des structures sur un ensemble ambiant remonte à M. Fréchet (1906) et P. Urysohn (1926). Un article de synthèse sur la théorie de la convergence est .
HAUT DE PAGE...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Diversité des champs applicatifs
BIBLIOGRAPHIE
-
(1) - ALLAM (A.A), BAKEIR (M.Y.), ABO-TABL (E.A.) - Some methods for generating topologies by relations, - Bulletin of the Malaysian Mathematical Sciences Society, (2), Vol. 31, No.1, pp. 35-45 (2008).
-
(2) - BALBES (R.), DWINGER (P.) - Distributive Lattices, - University of Missouri Press (1974).
-
(3) - BARAN (M.) - Closure operators in convergence spaces, - Acta Mathematica Hungarica, Vol. 87, No. 1/2, pp. 33-45 (2000).
-
(4) - BENTLEY (H.L.), HERRLICH (H.), LOWEN-COLEBUNDERS (E.) - Convergence, - Journal of Pure and Applied Algebra, Vol. 68, Nos. 1-2, pp. 27-45 (1990).
-
(5) - BIRKHOFF (G.) - Lattice Theory, - Colloquium Publications, 25, American Mathematical Society, 3rd ed., 418 pages (1979).
-
(6) - BLYTH (T.S.) - Lattices...
DANS NOS BASES DOCUMENTAIRES
-
Géométrie affine et euclidienne.
-
...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive