Présentation
En anglaisRÉSUMÉ
Cet article s'intéresse à la dynamique des systèmes non linéaires, et en particulier aux comportements chaotiques. L’imprédictibilité de ces comportements chaotiques au-delà d'un certain horizon temporel est la conséquence de leur sensibilité aux conditions initiales. Elle implique que, dans un espace des phases, deux trajectoires chaotiques, initialement proches l’une de l’autre, s’éloignent exponentiellement au cours du temps. Il existe donc un horizon de prédictabilité qui n’est pas infini.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Gérard GOUESBET : Docteur d’État - Professeur à l’INSA de Rouen, UMR-CNRS 6614
-
Siegfried MEUNIER-GUTTIN-CLUZEL : Maître de conférence à l’INSA de Rouen, UMR-CNRS 6614
INTRODUCTION
Au-delà de la physique newtonienne, deux révolutions scientifiques ont marqué le siècle dernier, chacune de ces révolutions étant associée au fait qu’une certaine quantité, précédemment considérée comme infinie, s’est avérée finie.
La première révolution est la conséquence du caractère fini de la vitesse de la lumière, une constante indépendante de l’observateur, donnant naissance au monde einsteinien de la relativité. L’univers de la relativité, pour le moins de la relativité restreinte, est déterministe et prédictible.
La seconde révolution résulte du fait qu’il existe un quantum minimal d’action h/2π (l’inverse de cette action n’est donc pas infinie), menant à la mécanique quantique. L’évolution d’un état quantique est régie par une équation déterministe et prédictible (l’équation de Schrödinger) entre deux mesures, mais le processus de mesure lui-même (réduction du paquet d’ondes) est non déterministe et non prédictible, sauf dans un sens statistique.
Dans cet article, nous nous consacrons à la dynamique des systèmes non linéaires, en particulier aux comportements chaotiques qui témoignent de ce que certains auteurs nomment une troisième révolution. Dans ce cadre, il apparaît que des comportements irréguliers ne résultent pas nécessairement de l’interaction entre un grand nombre de degrés de liberté ( ). En particulier, s’agissant d’applications non linéaires à une dimension, un seul degré de liberté (une seule variable) peut être suffisant pour engendrer des comportements de « chaos déterministe » alliant déterminisme et imprédictibilité. L’imprédictibilité (au-delà d’un certain horizon temporel) des comportements chaotiques est la conséquence de leur sensibilité aux conditions initiales, qui implique que, dans un espace des phases, deux trajectoires chaotiques, initialement proches l’une de l’autre, s’éloignent exponentiellement au cours du temps. Il existe donc un horizon de prédictabilité qui n’est pas infini.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Attracteurs chaotiques à temps continu
3.1 Système de Lorenz
Le système de Lorenz résulte d’une troncature des équations de la mécanique des fluides motivée par des études de météorologie pour un problème de convection thermique en boîte. Il s’écrit sous la forme de trois EDO non linéairement couplées :
avec :
- σ :
- nombre de Prandtl du fluide
- R :
- nombre de Rayleigh qui représente une différence de température ΔT adimensionnalisée
- b :
- caractérise la forme de la cavité.
Si (x, y, z) = 0, on obtient un point fixe correspondant à l’absence de convection, quelles que soient les valeurs des paramètres de contrôle. L’étude de la stabilité de ce point fixe, effectuée en linéarisant le système d’équations près de ce point et en calculant les valeurs propres du jacobien, montre qu’il est stable pour R = 0 . Ce point fixe est alors un attracteur et c’est le seul attracteur dans l’espace des phases.
Cet attracteur perd sa stabilité pour R = 1, et le fluide se met donc en mouvement. Ce changement qualitatif de comportement s’appelle une bifurcation 5. Au travers de cette bifurcation, le point fixe à l’origine, devenu instable, donne naissance à deux nouveaux points fixes stables. Les deux mouvements stables associés sont symétriques et,...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Attracteurs chaotiques à temps continu
BIBLIOGRAPHIE
-
(1) - SMALE (S.) - Differentiable dynamical systems - . Bulletin of the American Mathematical Society, 73, p. 747-817 (1967).
-
(2) - LORENZ (E.N.) - Deterministic nonperiodic flow - . Journal of Atmospheric Science, 20, p. 130-141 (1963).
-
(3) - RUELLE (D.), TAKENS (F.) - On the nature of turbulence - . Communications in Mathematical Physics, 20(3), p. 167-192 (1971).
-
(4) - H. POINCARÉ, philosophe et mathématicien - . Pour la Science, trimestriel, no 4 (août-novembre 2000).
-
(5) - POINCARÉ (H.) - Sur le problème des trois corps et les équations de la dynamique - . Mémoire couronné du prix de S.M. le roi Oscar II de Suède et de Norvège (nov. 1890).
-
(6) - POINCARÉ (H.) - Les méthodes nouvelles de la mécanique céleste - ....
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive