Article | REF: M1654 V1

Magnetron sputtering

Authors: Alain BILLARD, Frédéric PERRY

Publication date: December 10, 2005, Review date: June 4, 2024

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHORS

  • Alain BILLARD: Senior Lecturer at Henri Poincaré University. Nancy I - Head of the "Physical Deposition" team. Surface Science and Engineering Laboratory

  • Frédéric PERRY: Doctorate from Henri Poincaré University - Maintenance and Development Manager. PVD co Sarl

 INTRODUCTION

Physical Vapour Deposition (PVD) processes are a set of techniques for synthesizing metallurgical coatings or ceramic films, with applications in fields as diverse as mechanics, optics, electronics, the chemical and aeronautical industries, etc. Generally speaking, coatings are produced in a rarefied atmosphere (< 10 Pa) in three stages: the creation of a metal vapour from a source (or target), its transport through a reactor and its condensation on the surface of a substrate to be coated. Although the term PVD encompasses a wide range of processes, they can be classified into three main categories, depending on how the metal vapour is obtained: by thermal effect, it's called evaporation, while by mechanical effect, it's called sputtering. In the case of low-pressure cathodic arcing, both effects are used to generate metal vapour.

A plasma-assisted physical deposition reactor comprises at least a secondary vacuum chamber, a metal vapor source, a substrate holder isolated from the rest of the installation, a flowmeter and the generators needed to create the electrical discharge and polarize the substrates. In this section, we focus on a technique that is enjoying a major industrial boom, thanks to the considerable progress made over the last twenty to thirty years in understanding the mechanisms that govern it: magnetron sputtering.

The first part will be devoted to a detailed study of the magnetron sputtering process. After an overview of the physical mechanisms involved, we will describe the various methods used to obtain coatings on metals or metal alloys, highlighting the relationships between the conditions under which they are produced and the metallurgical characteristics of the coatings, the latter conditioning their properties in use.

The second section describes the phenomena that enable ceramic coatings to be synthesized in the presence of a reactive atmosphere. The main difficulties inherent in the magnetron sputtering process under reactive conditions and the methods developed to overcome them will also be presented. Finally, we will propose two spectroscopic methods of plasma diagnosis and optical interferometry for in situ process control.

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Metal treatments

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Magnetron sputtering