Overview
FrançaisABSTRACT
This article is a review of the Pulsed Laser Deposition technique (PLD). It is a Physical Vapor Deposition (PVD) technique that consists in focusing a high-power laser on a target that contains the chemical elements of the material to grow. In the case of epitaxy, PLD is often called Laser-MBE. This article first describes the mechanisms in play in PLD, the experimental setup and the advantages and drawbacks of PLD. Then the deposition parameters and several advanced techniques related to PLD are reported. Finally several applications of this technique are illustrated.
Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.
Read the articleAUTHOR
-
Thomas FIX: CNRS research fellow - ICube Laboratory, - University of Strasbourg and CNRS, Strasbourg, France
INTRODUCTION
Pulsed laser ablation or Pulsed Laser Deposition (PLD) is a physical vapor deposition (PVD) technique, which involves focusing a high-power laser onto a target containing the chemical species of the material to be deposited. The target and substrate are located in a vacuum frame or under a reactive atmosphere such as O 2 . This technique can be used to obtain amorphous, polycrystalline, textured or epitaxial deposits. In the latter case, PLD is commonly referred to as Laser-MBE in reference to the Molecular-Beam Epitaxy technique. One of the major advantages of PLD is the ability to rapidly explore new materials, thanks to the low constraints on the size and quality of the starting target, and the small number of parameters to be optimized.
In this article, after a brief history, we first describe the mechanisms involved in PLD, the experimental set-up and the advantages and disadvantages of PLD. Next, we detail the most important parameters in this type of deposition, before outlining some advanced in situ techniques such as RHEED (Reflection High Energy Electron Diffraction), SHG (Second Harmonic Generation), combinatorial deposition and large-area deposition. Finally, some examples of deposited materials are presented, including oxides, nitrides, metals, carbonaceous materials and biomaterials, polymers and organic molecules.
At the end of the article, readers will find a glossary and a table of acronyms.
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
KEYWORDS
thin films | materials | PLD | oxides
This article is included in
Optics and photonics
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Pulsed laser ablation deposition
Bibliography
Directory
Manufacturers – Suppliers – Distributors (non-exhaustive list)
AdNaNo
Neocera
PVD Products
...Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference