Présentation
En anglaisRÉSUMÉ
L'imagerie est une technique utilisée dans de nombreux domaines liés à la mécanique des fluides. Elle permet de mesurer des paramètres géométriques (taille, forme…), ainsi que des champs de grandeurs scalaires (température, pH, mélange…).
Cet article propose une vue d’ensemble de l’imagerie et de son application en mécanique des fluides. Il présente les principaux montages expérimentaux utilisés, ainsi que leur mise en œuvre. Les aspects traitement du signal et gestion de l'information, essentiels dans ce cas, sont également abordés. Enfin, l'article illustre le potentiel de la technique via plusieurs exemples d'applications mettant l'accent sur le couplage et l'imagerie ultrarapide.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Imaging is a technique used in various fields related to fluid mechanics. It allows the measurement of geometric parameters such as size and shape, as well as scalar field variables like temperature, pH, and mixture.
This article provides an overview digital imaging and its application in fluid mechanics. It presents the main experimental setups used and their implementation. The aspects of signal processing and information management, crucial in this context, are also addressed. Finally, the article illustrates the potential of the technique through several examples of applications emphasizing coupling and ultra-fast imaging.
Auteur(s)
-
Sébastien CAZIN : Ingénieur de recherche CNRS - IMFT (UMR 5502 : CNRS, Toulouse INP, université UT3 Paul Sabatier), France
-
Gilles GODARD : Ingénieur de recherche CNRS - UMR 6614/CORIA, CNRS/INSA et université de Rouen, Saint-Étienne-du-Rouvray, France
-
Fabrice LAMADIE : Directeur de recherche CEA - CEA, DES, ISEC, DMRC, université de Montpellier, France
-
Pierre SLANGEN : Professeur - EuroMov Digital Health in Motion, université de Montpellier, IMT Mines Ales, France
INTRODUCTION
A travers les siècles, l’homme a observé les écoulements via des phénomènes naturels (nuages, fumées, algues…) et en a fait des représentations diverses pour chercher à en comprendre la phénoménologie. Tout un chacun a en tête certains dessins, certaines iconographies, de Leonard de Vinci ou de Giovanni Battista Venturi, matérialisant des zones de turbulence, ou encore des lâchers tourbillonnaires à l’aide de lignes de courant dessinées manuellement. Ces représentations, tout d’abord très qualitatives, ont peu à peu donné lieu, au fil du temps et des progrès technologiques, à des caractérisations plus quantitatives : mesures de vitesse, trajectographies, suivis d’objets dans les écoulements, interactions fluide-structures, mesures de concentrations, de températures, etc., et en s’appuyant sur l’imagerie et la visualisation.
Aujourd’hui, la caractérisation des écoulements en mécanique des fluides fait appel à de multiples techniques de mesure qui permettent d’explorer de nombreuses échelles spatiales et temporelles. Parmi elles, les techniques basées sur l’imagerie sont, sans aucun doute, parmi les plus fondamentales, et elles ont naturellement connu un essor important du fait de leur caractère non intrusif et de leur capacité à observer les écoulements à différentes échelles.
L’imagerie, tout d’abord analogique, a cédé le pas à l’imagerie numérique dans les années 1980 et au traitement d’images assisté par ordinateur, faisant basculer cette technique dans le domaine des techniques métrologiques. L’émergence des lasers, en parallèle, a ouvert la porte au couplage des techniques et à la mesure non intrusive d’écoulements de plus en plus complexes, notamment les écoulements polyphasiques. Aujourd’hui, l’apparition des méthodes d’intelligence artificielle, qui sont en train de révolutionner l’imagerie et le traitement d’images, laisse augurer d’un avenir encore plus riche pour cette technique.
Cet article propose un état de l’art des techniques d’imagerie pour la mesure en mécanique des fluides. Il détaille, tout d’abord, les différents types de montages expérimentaux basés sur l’imagerie, en traitant dans le détail les matériels rencontrés et en proposant quelques exemples de référence. Ensuite, la question du traitement du signal menant à l’extraction d’informations physiques quantitatives dans les écoulements est discutée. Et enfin, des exemples tirés de différents travaux récents de recherche sont présentés à titre d’illustrations.
MOTS-CLÉS
imagerie traitement du signal fluorescence Mécanique des fluides ombroscopie grandeurs scalaires
KEYWORDS
imaging | signal processing | fluorescence | Fluid mechanics | shadowgraphy | scalar fields
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Montages expérimentaux (matériels et méthodes)
1.1 Sources de lumière
En imagerie pour la mécanique des fluides, l’éclairage est un des éléments les plus importants, car il permet de révéler et/ou de quantifier les phénomènes physiques étudiés.
Les sources de lumière se caractérisent par leur flux lumineux, leur gamme spectrale, leur chromatisme, leur temps caractéristique ou encore leur géométrie. Les phénomènes physiques à caractériser (propriétés des fluides, structure et vitesse de l’écoulement …) orientent leur choix. Parmi toutes les sources de lumière potentielles, les plus utilisées aujourd’hui sont les lasers (généralement monochromatiques) et les réseaux de LEDs (multilongueurs d’onde en lumière blanche).
HAUT DE PAGE
Pour commencer, il est important de noter que les sources laser peuvent entraîner des lésions (oculaires et cutanées) irréversibles. Pour ces raisons, elles sont classées sur une échelle de risque selon leurs Limites d’émission accessible (LEA), décrites dans la norme NF EN 60825-1 [SL 6 150]. Dans la majorité des cas, les systèmes utilisés pour l’imagerie scientifique appartiennent à la classe 4, la plus dangereuse. Leur utilisation impose une formation spécifique (connaissance des risques potentiels…), l’aménagement des salles de mesures et le port de lunettes de protection adaptées.
-
Caractéristiques des sources laser
En imagerie, les sources laser sont fondamentales car elles disposent de caractéristiques variées et étendues leur permettant de s’adapter à une multitude de configurations expérimentales. Le caractère directionnel, l’énergie importante, les longueurs d’onde disponibles, le monochromatisme, la très large gamme de temps caractéristiques font partie des paramètres rendant ces sources incontournables.
Selon la nature et la dynamique des phénomènes...
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Montages expérimentaux (matériels et méthodes)
BIBLIOGRAPHIE
-
(1) - BOUTIER (A.) - Métrologie laser pour la mécanique des fluides – Granulometrie et techniques spectroscopiques – Tomes 1 et 2. - Cachan (2012).
-
(2) - HOLST (G.) - Scientific CMOS image sensors, - Laser Phot., vol. 5 (2009).
-
(3) - KHALIL (A.), PUEL (F.), CHEVALIER (Y.), GALVAN (J.M.), RIVOIRE (A.), KLEIN (J.-P.) - Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis. - Chem. Eng. J., vol. 165, n° 3, pp. 946–957, doi: 10.1016/j.cej.2010.10.031 (2010).
-
(4) - MAAß (S.), ROJAHN (J.), HÄNSCH (R.), KRAUME (M.) - Automated drop detection using image analysis for online particle size monitoring in multiphase systems, - Comput. Chem. Eng., vol. 45, pp. 27–37, doi: 10.1016/j.compchemeng.2012.05.014 (2012).
-
(5) - SETTLES (G.S.), HARGATHER (M.J.) - A review of recent developments in schlieren and shadowgraph techniques, - Measurement Science and Technology, vol. 28, n° 4. Institute of Physics...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Alcal bfi
Ando rOxford Instruments
Berkeley Nucleonics
https://www.berkeleynucleonics.com/
CERCO designs
Coherent
Dantec Dynamics
http://www.dantecdynamics.com/
Edmunds Optics
Hamamatsu
HTM
IDEXot-CVI
Laser component
https://www.lasercomponents.com/fr/
Laseroptik
Laser2000
LaVision
Lumibird
MKS
Opto/Alliance Vision
https://www.alliancevision.com/index.php/fr/
Opton Laser
PhotonLines
Photron
...
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive