Présentation
En anglaisRÉSUMÉ
Métal précieux, mais aussi industriel, l’argent présente une grande conductivité électronique et thermique, et un pouvoir réflecteur élevé. La méthode métallurgique d’extraction de l’argent dépend du métal avec lequel il est associé ; hydrométallurgie basée sur la solubilisation par le cyanure pour l’or, pyrométallurgie pour les concentrés de plomb, pyro-hydrométallurgie pour ceux du cuivre, hydrométallurgie pour ceux du zinc. Les coûts de production varient grandement en fonction du pays et de l’exploitation à l’autre. La production minière d’argent couvre plus des 2/3 de la demande. Même si la récupération de l’argent à partir des déchets solides reste complexe, le taux de recyclage de ce métal atteint néanmoins 20 %.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Auteur(s)
-
Pierre BLAZY : Professeur honoraire - Ancien Directeur de l’École Nationale Supérieure de Géologie (ENSG)
-
El-Aïd JDID : Docteur ès Sciences - Ingénieur de Recherche au Laboratoire Environnement et Minéralurgie (LEM) - ENSG – INPL – CNRS – UMR 7569
INTRODUCTION
L’argent est un métal à la fois précieux et industriel (photographie, électronique, soudure...). Ses principales propriétés sont ses conductivités électronique et thermique élevées et son pouvoir réflecteur.
La production minière d’argent couvre plus des 2/3 de la demande. Les cours de l’argent suivent toujours ceux de l’or et subissent, comme pour ce dernier, des phases spéculatives.
Dans la nature, l’argent est associé, souvent sous forme élémentaire, à l’or, au cuivre, au plomb et au zinc. Il existe aussi des sulfures et des sulfosels d’argent. Lorsque l’argent est associé à l’or, la méthode métallurgique d’extraction universellement mise en œuvre est l’hydrométallurgie basée sur la solubilisation par le cyanure, suivie de l’adsorption sur charbon actif ou de la cémentation (précipitation) par de la poudre de zinc. Lorsque l’argent est associé aux sulfures, il est récupéré lors du traitement des concentrés de ces sulfures (pyrométallurgie pour les concentrés de plomb, pyro-hydrométallurgie pour ceux du cuivre, hydrométallurgie pour ceux du zinc). Le fondeur applique des bonifications pour la teneur en argent de ces concentrés de métaux de base, mais l’affineur ne paye que 93 à 99 % de l’argent contenu. Les coûts de production peuvent varier du simple au triple suivant les exploitations et les pays. Les grandes sociétés productrices sont situées en Australie, au Canada, au Chili, aux États-Unis, au Mexique et au Pérou.
La récupération de l’argent à partir des déchets solides ou liquides est toujours complexe et doit être adaptée à chaque secteur d’activité. Le taux de recyclage de l’argent est de 20 % en moyenne.
Les principales sources de pollution par l’argent sont l’industrie photographique, la miroiterie et la galvanoplastie.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Chimie de la dissolution de l’argent par complexation
Depuis longtemps le cyanure est connu pour être un puissant lixiviant de l’or et de l’argent, car il donne des cyano-complexes très stables. Le cyanure est en effet très efficace pour lixivier des minerais d’or et d’argent, mais certains types de minerais sont considérés comme réfractaires (minerais charbonneux, pyritiques, arsénieux, manganifères, cuproferreux). On a donc été amené à rechercher d’autres lixiviants, capables de traiter ces minerais ou concentrés. Le comportement de l’argent (comme celui de l’or) peut être compris comme une dissolution électrochimique interprétable à partir des diagrammes potentiel-pH (ou Eh – pH), non seulement pour expliquer la cyanuration mais aussi la mise en solution par d’autres lixiviants.
6.1 Systèmes argent-eau et argent-eau-cyanure
Les diagrammes Eh-pH de la figure 2 sont construits pour une concentration en argent de 10–4 M, à température ambiante (25 oC). L’argent est un métal très noble couvrant une grande partie du domaine de stabilité de l’eau. En l’absence d’agents oxydants et de ligands complexants, il est relativement stable à tous les pH. Cependant, il peut être dissous en milieu oxydant par des solutions acides ou modérément basiques, donnant des ions Ag+. Avec des solutions fortement basiques, on obtient des ions AgO– (figure 2a ). Dans les eaux naturelles, Ag+ est stable sous certaines conditions et son existence dans des environnements aqueux permet la formation d’espèces minérales telles que sulfures, halogénures, jarosites, séléniures. Il existe en effet plus de 200 espèces minérales plus ou moins complexes. La stabilité des ions Ag+ explique aussi, en l’absence de précipitation, les migrations dans des milieux poreux et la formation de gisements à basse température.
Le diagramme Eh-pH de l’argent en présence d’une solution aqueuse de cyanure (figure 2b ) est semblable à celui de l’or Métallurgie de l’or- Propriétés, économie et ressources...
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Chimie de la dissolution de l’argent par complexation
BIBLIOGRAPHIE
-
(1) - AVRAAMIDES (J.) - High purity silver powders. In Precious Metals. - Proceeding AIME, Annual Meeting, Los Angeles, p. 301-305, 27-29 févr. 1984.
-
(2) - BAHR (A.), PRIESEMANN (Th.) - Recovery of silver from refractory ores. - XVIth International Mineral Processing Congress, Ed. Forssberg, Elsevier Science Publishers, p. 1121-1135 (1988).
-
(3) - BALTHAZAR (V.), CLAESSENS (P.L.), THIRIAR (J.), LAPIERRE (J.F.) - Reducing silver losses in cathodes during copper electrorefining. In« Extraction Metallurgy ». - Symposium organized by IMM, p. 939-951, 10-13 juill. 1989.
-
(4) - BOLORUNDURO (S.A.), DREISINGER (D.B.) - Silver recovery from zinc-lead-iron complex sulphide oxydation. - Proceedings XXII IMPC, Cape Town, p. 1268-1277 (2003).
-
(5) - BOYLE (R.W.) - The geochemistry of silver and its deposits. - Geol. Surv. Can. Bull., 160 (1968).
-
(6) - CHADWICK...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
-
Australie
Mount Isa Mines
Pasminco
-
Canada
Boliden Ltd
Echo Bay Mines
Noranda Inc
-
Chili
Codelco
-
États-Unis
Cœur d’Alene Mines Corp
-
Mexique
Grupo Mexico - Asarco SA de CV
Met-Mex Penoles SA de CV
-
Pérou
Cia de Minas Buenaventura
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive