Article de référence | Réf : N720 v1

Caractérisation des matériaux viscoélastiques et normes en vigueur
Matériaux viscoélastiques - Atténuation du bruit et des vibrations

Auteur(s) : Luigi GARIBALDI, Menad SIDAHMED

Date de publication : 10 oct. 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les matériaux viscoélastiques ont des applications dans tous les domaines de l'ingénierie et des systèmes mécaniques, de l'électroménager au spatial en passant par l'automobile, l'aéronautique ou le génie civil. Ils sont destinés à dissiper l'énergie mécanique des vibrations en chaleur. Outre l'augmentation de la durée des structures, ils permettent d'atténuer le bruit et les vibrations. Les mécanismes de dissipation permettant de réduire l'amplitude des vibrations sont présentés, ainsi que les modèles rhéologiques simples et la courbe dite « maîtresse ». Ces modèles sont utilisés dans les modèles éléments finis lors de la conception d'une structure.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Viscoelastic materials are used in all engineering fields and mechanical systems, from household appliances to astronautics and automotive, aerospace and civil engineering industries. They are designed to dissipate the mechanical vibration energy into heat. In addition to increasing the lifetime of the structures, they can also reduce noise and vibration. The dissipation mechanisms that reduce the vibration amplitude are presented, as well as simple rheological models and the so-called "master curve”. These models are used in finite element models during the design of a structure.

Auteur(s)

INTRODUCTION

Les matériaux viscoélastiques trouvent des applications dans tous les domaines de l'ingénierie et des systèmes mécaniques, de l'électroménager au spatial en passant par l'automobile, l'aéronautique ou le génie civil (ponts...). Ils sont destinés à dissiper l'énergie mécanique des vibrations en chaleur. Outre l'augmentation de la durée des structures, ils permettent d'atténuer le bruit et les vibrations. On peut distinguer deux grandes classes de matériaux viscoélastiques : les polymères (élastomères, plastiques...) et les céramiques (verre, vernis...) ; voir la référence [5] de la fiche documentaire Matériaux viscoélastiques- Atténuation du bruit et des vibrations[Doc. N 720] par exemple.

Aujourd'hui dans une automobile, on peut trouver une trentaine de kilos de ce type de matériaux ; ils sont utilisés pour « découpler » le moteur de la caisse, dans les amortisseurs, mais également dans les tôles sandwich de la carrosserie (portières, plafond, coffre) ou à l'intérieur de l'habitacle y compris les sièges. L'objectif est bien entendu la réduction du bruit et des vibrations à l'intérieur de l'habitacle. Malgré les contraintes de poids, on retrouve abondamment ce type de matériaux en aéronautique pour isoler les systèmes électroniques et de mesures ou tout autres systèmes embarqués qu'il s'agit de protéger des vibrations. Toujours en aéronautique, on peut citer des applications de ces matériaux dans les palettes des turbines et les joints, mais aussi dans l'habillage intérieur. Le bâtiment est aussi un domaine où les viscoélastiques sont de plus en plus utilisés : on peut citer les cadres des volets roulants et les volets eux-mêmes, mais aussi les murs et les sols pour lesquels des matériaux aux caractéristiques viscoélastiques importantes permettent une réduction des vibrations et une isolation acoustique.

Nous donnons ci-après une liste non exhaustive d'éléments ou d'applications utilisant les matériaux viscoélastiques, quelques éléments types sont présentés en figure 1 de la fiche documentaire Matériaux viscoélastiques- Atténuation du bruit et des vibrations[Doc. N 720] :

  • plots et supports de moteurs et de machines ;

  • joints et courroies de transmission ;

  • bordures de vitrages et fixations de sous-systèmes ;

  • amortissement de plaques et coques en métal ;

  • parties de sièges et intérieur de cabines ;

  • pneus et roues ;

  • systèmes d'amortissement accordés.

La principale fonction des viscoélastiques est de fournir un mécanisme de dissipation de l'énergie mécanique des vibrations en chaleur. Par voie de conséquence, ils permettent d'atténuer le bruit et les vibrations. Il s'agit cependant, lors de la conception, de bien appréhender leur influence sur la structure. Celle-ci est fonction de la masse de ces éléments, de leur géométrie, des interfaces, de l'environnement et, bien sûr, des caractéristiques de dissipation du matériau.

Nous développons dans ce dossier les mécanismes de dissipation qui permettent de réduire l'amplitude des vibrations, puis les modèles rhéologiques simples ainsi que la courbe dite « maîtresse ». Ces modèles sont d'une grande importance car ils sont utilisés dans les modèles éléments finis lors de la conception d'une structure. Le 4e paragraphe présente quelques techniques de caractérisation expérimentale qui sont nécessaires pour identifier les paramètres des modèles rhéologiques. Dans la 5e partie, nous discutons des procédures d'intégration de ces matériaux dans les structures. L'effet de la disposition des matériaux dans une structure est abordé au chapitre 6.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n720


Cet article fait partie de l’offre

Métier : responsable bureau d’étude/conception

(371 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

4. Caractérisation des matériaux viscoélastiques et normes en vigueur

Le but de chaque procédure de caractérisation est de déterminer les paramètres du modèle de comportement que nous avons choisi, en fonction de sa finalité : le comportement macroscopique en fréquence et en température, les lois de vieillissement, le comportement sous précharge, pour n'en citer que quelques-uns. Les tests classiques, en général normalisés, ne permettent de calculer en une seule fois tous les paramètres nécessaires à la modélisation complète du matériau en dynamique, en tenant compte de toutes les conditions d'utilisation telles que les fréquence, température, précharge, vieillissement, humidité ou non linéarité (grandes déformations et asymétries de comportement par exemple). Il sera souvent nécessaire d'utiliser plusieurs techniques d'essai pour estimer tous les paramètres.

Pour identifier les paramètres fondamentaux des matériaux viscoélastiques (raideur et amortissement en fonction de la fréquence et de la température), on distingue trois types de procédures :

  • tests avec des sollicitations transitoires (fluage et relaxation des contraintes) ;

  • tests avec sollicitations continues (harmonique ou aléatoire) ;

  • analyse des propagations d'ondes ultrasonores ou non dans le matériau.

Le schéma suivant (figure 8) résume ces différentes techniques.

  • Tests avec sollicitations transitoires

    D'une manière générale, ces tests permettent de mesurer les paramètres en fonction du temps, les modules complexes étant obtenus par transformée de Fourier. Lorsque qu'on applique une force instantanée, nous accédons au phénomène de fluage et au phénomène de relaxation de contraintes en imposant un déplacement instantané (figure 9). Toutefois, ce type de test exige des temps de mesure assez élevés (on arrive très facilement à des heures ou des jours) lorsque les conditions d'humidité et de température doivent être contrôlées.

    Les définitions pour les fonctions de fluage et de relaxation sont :

    ( 10 )
    ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Métier : responsable bureau d’étude/conception

(371 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Caractérisation des matériaux viscoélastiques et normes en vigueur
Sommaire
Sommaire

Les matériaux viscoélastiques présentent de nombreuses applications dans divers domaines ; des exemples sont fournis en figure .

HAUT DE PAGE

2 Bibliographie

###

Références

BERANEK (L.L.) - VÉR (I.L.) (éditeurs) - Noise and vibration control engineering – principles and applications - . John Wiley & Sons (1992).

FERRY (J.D.) - Viscoelastic properties of polymers - . John Wiley & Sons (1980).

GARIBALDI (L.) - ONAH (H.N.) - Viscoelastic Material Damping Technology - . Becchis Osiride editeur, Torino (June 1996).

LAKES (R.S.) - Viscoelastic measurement techniques - . Review of Scientifîc Instruments, American Institute of Physics, vol. 75 (4) (april 2004).

NASHIF (A.D.) - JONES (D.I.G.) - HENDERSON (J.P.) - Vibration Damping - . John Wiley & Sons (1985).

SORRENTINO (S.) - GARIBALDI (L.) - Modal analysis of continuous systems with fractional derivative damping distributions - . ISMA 2004, Leuven (20-22 September 2004).

WILLIAMS (M.L.) - LANDEL (R.F.) - FERRY (J.D.) - The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids - . Journal of American Chemical Society, vol. 77 (1955).

Aux Éditions T.I. dans les Techniques de l'Ingénieur Base documentaire Bruit et vibrations

GARNIER (B.) - Isolation antivibratoire et antichoc – Définitions. Principes physiques - [B 5 140] (1994).

Base documentaire Étude et propriétés...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Métier : responsable bureau d’étude/conception

(371 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS