Présentation
EnglishRÉSUMÉ
En analyse de risque, l’approche analytique par processus ne permet pas de traiter les systèmes dynamiques industriels de forte complexité. L’approche statistique, avec le recours aux réseaux de Petri, devient alors d’un grand secours. En effet, la représentation graphique spécifique à cette approche permet entre autres une construction maîtrisée de modèles très complexes à partir d’un nombre limité d’événements, ainsi qu’une visualisation synthétique du modèle retenu. Les réseaux de Pétri se posent donc en formidable support de simulation dans le traitement de problèmes probabilistes, outil simple, souple et puissant, aux possibilités quasi illimitées, et qui offre de plus le meilleur rapport qualité/prix en la matière.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Pierre SIGNORET : Maître ès-Sciences - Expert Fiabiliste TOTAL - Ancien Vice-Président de l'Institut de Sûreté de Fonctionnement (ISdF) - Ancien Président de European Safety & Reliability Association (ESRA) - Ancien Animateur du Groupe de travail « Recherche Méthodologique » de l'IMdR-SdF
INTRODUCTION
Malgré tout son intérêt, l'approche analytique par processus de Markov (cf. dossier [SE 4 070] « Analyse des risques des systèmes dynamiques : préliminaires ») trouve rapidement des limites lorsque la complexité des systèmes industriels à étudier ou des paramètres probabilistes à évaluer augmente.
Un saut qualitatif devient nécessaire qui impose l'abandon de l'approche analytique pour l'approche statistique connue sous le nom de simulation de Monte-Carlo. Elle consiste à tirer des nombres au hasard pour animer un modèle représentant le comportement du système étudié dont l'évolution ainsi simulée sur un grand nombre d' histoires permet d'évaluer les informations probabilistes – fiabilité, disponibilité, disponibilité de production, etc. – recherchées.
Une fois franchi le pas de la simulation, reste à sélectionner un modèle de comportement efficace sur lequel s'exerce cette simulation. Le comportement des systèmes industriels présentant beaucoup d'analogie avec celui des automates à états finis – états discrets et dénombrables – l'un d'entre eux s'est détaché et a été adopté et adapté à ce propos dès la fin des années soixante-dix : le réseau de Petri (RdP).
C'est la représentation graphique du réseau de Petri qui lui confère ses caractéristiques les plus intéressantes : construction maîtrisée de grands modèles complexes à partir d'un nombre très limité d'éléments, visualisation synthétique du modèle obtenu, animation manuelle pas à pas pour en vérifier le comportement, etc.
Après avoir jeté les bases de la simulation de Monte-Carlo, ce dossier s'attache à montrer comment les réseaux de Petri constituent un formidable support de simulation permettant d'appréhender pratiquement tous les problèmes probabilistes rencontrés dans le domaine industriel.
Dans la continuité des approches analytiques (cf. les dossiers [SE 4 070] et [SE 4 071] « Analyse des risques des systèmes dynamiques : préliminaires et approche markovienne »), ce premier dossier [SE 4 072] se penche ensuite rapidement sur l'utilisation primitive des réseaux de Petri pour générer de gros graphes de Markov. Dans un second dossier [SE 4 073], des exemples simples sont proposés pour présenter de manière progressive la façon d'aborder les problèmes classiques – fiabilité et disponibilité – les plus élémentaires avant de se confronter aux situations autrement plus ardues de la disponibilité de production impliquant une modélisation très détaillée des procédures de maintenance et des niveaux de production du système étudié.
Au cours du temps, les réseaux de Petri de base ont subi des évolutions qui les ont conduits progressivement aux réseaux de Petri à prédicats et assertions que nous utilisons aujourd'hui. Grâce à la grande capacité de cette approche à absorber les améliorations, aucune remise en question drastique des choix initiaux n'a jamais été nécessaire. Bien que pourvus maintenant d'une puissance de modélisation incomparable, les réseaux de Petri n'ont pas encore dit leur dernier mot. Des possibilités d'amélioration existent qui sont abordées succinctement à la fin de ce dossier.
Pour un investissement intellectuel somme toute très minime, les réseaux de Petri fournissent un outil d'une souplesse d'utilisation et d'une puissance de modélisation aux possibilités quasi illimitées. Ils offrent indubitablement à l'heure actuelle le meilleur rapport qualité / prix en cette matière. Mettre le doigt dans l'engrenage des réseaux de Petri, c'est prendre le risque de trouver désormais les autres approches beaucoup trop pauvres et de ne plus pouvoir s'en passer !
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Sécurité et gestion des risques
(477 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Réseaux de Petri
5.1 Historique
L'invention des réseaux de Petri est toute récente puisqu'ils ont été définis pour la première fois dans une thèse présentée au début des années soixante. À noter que, leur inventeur étant allemand, Petri doit s'écrire sans accent aigu sur la voyelle e. Le but initial n'était pas du tout la sûreté de fonctionnement mais la représentation graphique du comportement d'automates à états finis. À l'heure actuelle, c'est encore la plus grosse utilisation qui en est faite et la majorité des travaux théoriques en la matière concerne leur utilisation en vérification formelle du bon fonctionnement d'automates. Une manifestation tangible de cette situation est la normalisation sous le nom de GRAFCET [5] d'une forme de réseaux de Petri destinés à la spécification des automates. Il en résulte qu'une recherche sur Internet est assez décevante pour notre propos car la très grande majorité des références trouvées est liée à leur utilisation dans le domaine de l'automatique ou de l'informatique.
L'utilisation des réseaux de Petri dans le domaine de la sûreté de fonctionnement procède d'un véritable détournement. Détournement qui a été réalisé en deux étapes :
-
au début des années 1980, Natkin se rend compte que les réseaux de Petri permettent d'identifier les états d'un système et propose dans sa thèse [8] de les utiliser pour générer de gros processus de Markov. Les premiers échos dans la communauté des fiabilistes de l'existence de cette nouvelle approche datent de la présentation au congrès de « Perros Guirec », fin 1980, des travaux réalisés par Jean-Claude Ligeron et Alain Delage [1] ;
-
au début des années 1980, on constate que les réseaux de Petri fournissent un formidable modèle de comportement apte à servir de support à la simulation de Monte-Carlo et commence à développer le logiciel MOCA-RP (Monte-Carlo basé sur les Réseaux de Petri) dont la première version industrielle date de 1982 et dont les développements se sont poursuivis jusqu'à ce jour.
Bien qu'encore un peu méconnue, cette approche a fait l'objet de nombreuses thèses en France et est de plus en plus utilisée dans le domaine industriel, en particulier pour les études de disponibilité de production. Il s'agit...
Cet article fait partie de l’offre
Sécurité et gestion des risques
(477 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Réseaux de Petri
Cet article fait partie de l’offre
Sécurité et gestion des risques
(477 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive