Présentation

Article

1 - TECHNIQUES D’ACQUISITION 3D

2 - SCANNERS LIDAR

3 - TRAITEMENT DES DONNÉES 3D

  • 3.1 - Traitements
  • 3.2 - Méthodologies

4 - APPLICATIONS OU MISE EN ŒUVRE

5 - DISCUSSION

  • 5.1 - Le choix du LiDAR
  • 5.2 - Aspects à prendre en compte pour un projet

6 - ASPECTS ENVIRONNEMENTAUX

7 - PERSPECTIVES ET ÉVOLUTIONS

8 - GLOSSAIRE

9 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : RE187 v1

Traitement des données 3D
LiDAR 3D : techniques d’acquisition et exploitation industrielle

Auteur(s) : Beatriz MARCOTEGUI, Andrés SERNA

Date de publication : 10 juil. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les scanners LiDAR, en constante évolution, permettent l'acquisition de données 3D précises. Accompagnés des GNSS et des centrales inertielles, eux aussi de plus en plus performants, ils permettent la création à grande échelle, rapide et précise de jumeaux numériques 3D. Un dernier élément est nécessaire pour créer une myriade d'opportunités : l'analyse de données massives afin d'extraire l'information utile. Cet article présente les principes de l'acquisition LiDAR, les traitements pour extraire les informations pertinentes ainsi qu'un survol des méthodologies employées. Finalement, quelques applications illustrent les nombreuses possibilités offertes par cette technologie.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

3D LiDAR: acquisition techniques and industrial applications

LiDAR scanners, in constant evolution, allow the acquisition of accurate 3D data. Coupled with GNSS and inertial measurement units, becoming also more and more efficient, they allow for large-scale, fast and accurate creation of 3D digital twins. One last element is necessary to create a myriad of opportunities: the analysis of the large amount of data acquired in order to extract useful information. This article presents the principles of LiDAR acquisition, the processing to extract relevant information, and an overview of the methodologies used for this purpose. Finally, some applications illustrate the many possibilities opened by this technology.

Auteur(s)

  • Beatriz MARCOTEGUI : Professeure - Mines Paris, Université PSL, centre de Morphologie mathématique (CMM), - Fontainebleau, France

  • Andrés SERNA : CEO & co-fondateur - The Cross Product (TCP), Fontainebleau, France

INTRODUCTION

La technologie 3D, et en particulier le LiDAR, bénéficie d’une forte accélération tant au niveau logiciel que matériel. Le marché de la voiture autonome, estimé à plusieurs milliards d’euros, a fait apparaître des dizaines d'acteurs proposant des solutions de plus en plus précises et de moins en moins chères. En parallèle, les récentes avancées en analyse de données massives, notamment avec l’intelligence artificielle, ouvrent la porte à un large éventail d’applications grâce à des traitements précis et à grande échelle.

Cet article fait une revue des avancements de cette technologie afin d’aider le lecteur à évaluer la pertinence du LiDAR pour un projet industriel.

L’article est organisé comme suit. La section 1 décrit les différentes techniques d’acquisition de l’information 3D ainsi que les avantages et inconvénients de chacune d’elles. La section 2 se focalise sur le LiDAR qui est la technologie la plus performante et répandue aujourd’hui. Les différentes configurations du système d’acquisition, aussi bien du point de vue de son montage sur un trépied fixe ou embarqué dans un véhicule, que du point de vue de la fréquence employée ou de la technologie d’orientation du faisceau, sont présentées. Une fois le nuage de points acquis, la section 3 présente les étapes d’analyse d’une chaîne de traitement qui va du nuage brut à l’application finale, ainsi que les techniques employées pour extraire les informations pertinentes à partir des nuages de points. Finalement, des exemples concrets d’applications réelles sont donnés dans la section 4.

Points clés

Domaine : Techniques d’imagerie et d’analyse

Degré de diffusion de la technologie : Croissance

Technologies impliquées : LiDAR

Domaines d’application : Building Information Modeling (BIM), smart city, gestion du territoire, modélisation de sites industriels, infrastructures linéaires (ferroviaire, électrique, autoroutière…).

Principaux acteurs français :

  • Pôles de compétitivité : Cap Digital, Systematic

  • Centres de compétence : IGN, CEREMA

  • Industriels : Trimble, The Cross Product, Yellowscan, Outsight, logiroad, Exwayz

Autres acteurs dans le monde :

Geometric Computation Group, Stanford University.

Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology.

UCL Department of Civil, Environmental and Geomatic Engineering, University College London.

Photogrammetry and Remote Sensing, ETH Zurich.

Photogrammetry & Robotics, Computer Vision, Autonomous Intelligent Systems, University of Bonn.

GeoTECH Group, Universidad de Vigo.

Contact : [email protected], [email protected]

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

classification   |   modelling 3D   |   lidar   |   digital twin   |   3D scanner

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re187


Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Traitement des données 3D

Une fois les données acquises, différents traitements sont nécessaires pour extraire les informations pertinentes pour le développement d’applications pratiques. La section 3.1 décrit les différents traitements réalisés sur les nuages de points qui vont depuis l’acquisition jusqu’à l’application métier. Dans un deuxième temps, dans la section 3.2, nous présenterons les idées générales des méthodes employées dans une chaîne de traitement générique de nuage de points et nous donnerons les références bibliographiques des approches les plus représentatives du domaine.

3.1 Traitements

Le LiDAR produit un ensemble de points 3D dans le système de coordonnées (X, Y, Z) du scanner, représentant un objet ou une scène complète. Ces points correspondent à un échantillonnage de la surface de l'objet d'étude et constituent un jumeau numérique, permettant d’analyser et même de prendre des mesures comme si nous avions l'objet ou la scène à portée de main.

Nous allons maintenant lister les différents traitements qu'on peut appliquer à ces nuages de points 3D pour augmenter le niveau d'abstraction.

HAUT DE PAGE

3.1.1 Recalage

  • Recalage relatif

    La première étape avant tout traitement est de recaler les données acquises. Deux types de recalages sont nécessaires. Un recalage relatif, qui consiste à réunir dans un même système de coordonnées l’ensemble des nuages de points acquis depuis différents points de vue. Pour un système TLS, il s’agit de trouver les correspondances entre les vues partielles de la scène pour obtenir une vue globale cohérente. Pour un système ALS ou MMS, il s’agit de consolider l’ensemble de points acquis depuis la trajectoire du véhicule sur lequel le système est embarqué. Les fabricants de...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Traitement des données 3D
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SAN JOSÉ ALONSO (J.), MARTÍNEZ RUBIO (J.), FERNÁNDEZ MARTÍN (J.), GARCÍA FERNÁNDEZ (J.) -   Comparing time-of-flight and phase-shift. The survey of the Royal Pantheon in the Basilica of San Isidoro (León).  -  In : ISPRS Workshop 3D-ARCH (2011).

  • (2) - SUCHOCKI (C.) -   Comparison of time-of-flight and phase-shift TLS intensity data for the diagnostics measurements of buildings.  -  In : Materials, vol. 13, n° 2, p. 353 (2020).

  • (3) -   Trois façons de déterminer une distance avec LiDAR.  -  YellowScan. https://www.yellowscan-lidar.com/fr/knowledge/three-ways-to-determine-a-distance-with-lidar/ (consulté le 6 décembre 2022).

  • (4) - ZHANG (Y.), CARBALLO (A.), YANG (H.), TAKEDA (K.) -   Autonomous Driving in Adverse Weather Conditions : A Survey.  -  ArXiv Prepr. ArXiv211208936 (2021).

  • (5) - FILGUEIRA (A.), GONZÁLEZ-JORGE (H.), LAGÜELA (S.), DÍAZ-VILARIÑO (L.), ARIAS (P.) -   Quantifying the influence of rain in LiDAR performance.  -  Measurement,...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS