Présentation
EnglishRÉSUMÉ
L'identification de systèmes consiste à déterminer un modèle mathématique d'un système dynamique sur la base de données expérimentales. L'objectif est de reproduire au mieux le comportement entrée-sortie du système, pour cela le choix de la structure et des paramètres de ce modèle est évidemment primordial. Cet article présente la méthodologie d'identification des modèles à temps continu : exploitation des connaissances disponibles, méthodes d'estimation paramétrique, jusqu'à traiter des aspects plus avancés comme l'identification des systèmes en boucle fermée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Hugues GARNIER : Professeur à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy
-
Marion GILSON : Maître de Conférences à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy
-
Thierry BASTOGNE : Maître de Conférences à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy
-
Alain RICHARD : Professeur à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy
INTRODUCTION
L’identification de systèmes consiste à rechercher un modèle mathématique d’un système dynamique à partir de données expérimentales et de connaissances disponibles « a priori ». Ce modèle macroscopique est caractérisé par une structure et par des paramètres qu’il convient de choisir et d’ajuster, afin de reproduire au mieux le comportement entrée-sortie du système.
Traditionnellement, les méthodes d’identification de systèmes sont employées pour déterminer des modèles permettant la synthèse de lois de commande. Ce domaine d’utilisation conventionnel n’est toutefois pas le seul et les méthodes sont aussi utilisées pour :
-
l’estimation de paramètres physiques non directement mesurables ;
-
le diagnostic de systèmes à base de modèle ;
-
la simulation, utilisée à des fins de conception, de prévision ou de formation ;
-
l’interprétation d’essais.
Bien que les méthodes soient essentiellement développées par les automaticiens et les mathématiciens appliqués, elles peuvent être utilisées dans des domaines très variés allant des processus de fabrication à l’économétrie, en passant par la biologie, les moyens de transport ou les processus environnementaux.
Ce dossier a pour objectif de mieux faire connaître les méthodes d’identification de modèles à temps continu dont les algorithmes sont, à présent, également regroupés dans des bibliothèques logicielles , de faire un tour d’horizon des développements récents et de présenter quelques résultats d’applications de ces méthodes.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Formulation du problème d’identification
Soit un système mono-entrée, mono-sortie, linéaire, à temps continu, causal et invariant dans le temps soumis à un ensemble de conditions initiales quelconques. Ce système est décrit par l’équation différentielle à coefficients constants :
avec :
- u (t ) :
- signal d’entrée
- :
- réponse non bruitée du système à u (t )
- x(i ) (t ) :
-
ie dérivée par rapport au temps du signal à temps continu x (t ).
La présence d’un retard pur a priori connu, multiple entier de la période d’échantillonnage, peut être traitée sans difficulté. Celui-ci est supposé nul ici afin d’alléger les notations.
L’équation [1] permet de représenter la sortie du système pour toutes les valeurs de la variable continue t et peut également s’écrire sous la forme compacte suivante :
avec
où p représente l’opérateur différentiel . Go (p ) est l’opérateur de transfert du système vrai ; les polynômes Ao (p...
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Formulation du problème d’identification
BIBLIOGRAPHIE
-
(1) - BESANÇON-VODA (A.), GENTIL (S.) - Régulateurs PID analogiques et numériques. - Techniques de l’ingénieur, , Informatique industrielle (1999).
-
(2) - LJUNG (L.) - System identification. Theory for the user. - Prentice Hall, Upper Saddle River, 2nd edition (1999).
-
(3) - WALTER (E.), PRONZATO (L.) - Identification de modèles paramétriques à partir de données expérimentales. - Masson (1994).
-
(4) - UNBEHAUEN (H.), RAO (G.P.) - Continuous-time approaches to system identification - a survey. - Automatica, 26(1) : 23-35 (1990).
-
(5) - SINHA (N.K.), RAO (G.P.) - Identification of continuous-time systems. Methodology and computer implementation. - Kluwer Academic Publishers, Dordrecht (1991).
-
(6) - GARNIER (H.), MENSLER (M.), RICHARD (A.) - Continuous-time model identification from sampled...
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive