Présentation

Article

1 - MODÈLES À TEMPS DISCRET ET MODÈLES À TEMPS CONTINU

2 - MÉTHODOLOGIE D’IDENTIFICATION DE MODÈLES À TEMPS CONTINU

3 - FORMULATION DU PROBLÈME D’IDENTIFICATION

4 - MÉTHODES D’ESTIMATION PARAMÉTRIQUE DE MODÈLES À TEMPS CONTINU

  • 4.1 - Méthode des filtres de variables d’état (FVE)
  • 4.2 - Estimateur optimal de la variable instrumentale SRIVC
  • 4.3 - Méthode de l’erreur de sortie (COE)

5 - EXEMPLE : CAS DU BANC D’ESSAI RAO-GARNIER

6 - OUTIL LOGICIEL ET AVANTAGES

  • 6.1 - Bibliothèque logicielle CONTSID
  • 6.2 - Avantages

7 - ASPECTS PLUS AVANCÉS

8 - APPLICATIONS

9 - CONCLUSION

Article de référence | Réf : S7140 v1

Conclusion
Identification de modèles paramétriques à temps continu

Auteur(s) : Hugues GARNIER, Marion GILSON, Thierry BASTOGNE, Alain RICHARD

Date de publication : 10 sept. 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

L'identification de systèmes consiste à déterminer un modèle mathématique d'un système dynamique sur la base de données expérimentales. L'objectif est de reproduire au mieux le comportement entrée-sortie du système, pour cela le choix de la structure et des paramètres de ce modèle est évidemment primordial. Cet article présente la méthodologie d'identification des modèles à temps continu : exploitation des connaissances disponibles, méthodes d'estimation paramétrique, jusqu'à traiter des aspects plus avancés comme l'identification des systèmes en boucle fermée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The identification of systems consists in determining a mathematical model of a dynamic system on the basis of experimental data. As the objective is to, at best, reproduce the input-output behavior of the system, the choice of the structure and parameters of this model is evidently essential. This article presents the identification methodology of continuous-time systems: exploitation of available knowledge, parametric estimation methods as well as more advanced aspects such as the identification of closed-loop systems.

Auteur(s)

  • Hugues GARNIER : Professeur à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy

  • Marion GILSON : Maître de Conférences à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy

  • Thierry BASTOGNE : Maître de Conférences à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy

  • Alain RICHARD : Professeur à l’Université Henri Poincaré, Nancy 1 - Centre de Recherche en Automatique de Nancy

INTRODUCTION

L’identification de systèmes consiste à rechercher un modèle mathématique d’un système dynamique à partir de données expérimentales et de connaissances disponibles « a priori ». Ce modèle macroscopique est caractérisé par une structure et par des paramètres qu’il convient de choisir et d’ajuster, afin de reproduire au mieux le comportement entrée-sortie du système.

Traditionnellement, les méthodes d’identification de systèmes sont employées pour déterminer des modèles permettant la synthèse de lois de commande. Ce domaine d’utilisation conventionnel n’est toutefois pas le seul et les méthodes sont aussi utilisées pour :

  • l’estimation de paramètres physiques non directement mesurables ;

  • le diagnostic de systèmes à base de modèle ;

  • la simulation, utilisée à des fins de conception, de prévision ou de formation ;

  • l’interprétation d’essais.

Bien que les méthodes soient essentiellement développées par les automaticiens et les mathématiciens appliqués, elles peuvent être utilisées dans des domaines très variés allant des processus de fabrication à l’économétrie, en passant par la biologie, les moyens de transport ou les processus environnementaux.

Ce dossier a pour objectif de mieux faire connaître les méthodes d’identification de modèles à temps continu dont les algorithmes sont, à présent, également regroupés dans des bibliothèques logicielles , de faire un tour d’horizon des développements récents et de présenter quelques résultats d’applications de ces méthodes.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7140


Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

9. Conclusion

Dans ce dossier, on a présenté un panorama des méthodes d’identification directe de modèles linéaires de type boîte-noire à temps continu à partir de données échantillonnées. Ces approches sont longtemps restées dans l’ombre des méthodes traditionnelles d’identification de modèles à temps discret. Les approches d’identification directe de modèles à temps continu présentent les avantages de fournir un modèle directement interprétable physiquement par l’utilisateur, de faciliter la mise en œuvre de la procédure complète de l’identification des systèmes ou encore de pouvoir traiter le cas de données échantillonnées à pas variable. La boîte à outils logicielle CONTSID a contribué à la diffusion et facilite l’utilisation de ces approches. Ces approches ne doivent cependant pas être considérées comme concurrentes mais plutôt comme complémentaires aux techniques d’identification de modèles à temps discret.

Nous souhaiterions remercier nos collègues, David Brie, Eric Huselstein, Michel Mensler, Saïd Moussaoui, Patrick Sibille, Magalie Thomassin, qui à des degrés divers ont contribué aux travaux présentés dans ce dossier.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BESANÇON-VODA (A.), GENTIL (S.) -   Régulateurs PID analogiques et numériques.  -  Techniques de l’ingénieur, Régulateurs PID analogiques et numériques, Informatique industrielle (1999).

  • (2) - LJUNG (L.) -   System identification. Theory for the user.  -  Prentice Hall, Upper Saddle River, 2nd edition (1999).

  • (3) - WALTER (E.), PRONZATO (L.) -   Identification de modèles paramétriques à partir de données expérimentales.  -  Masson (1994).

  • (4) - UNBEHAUEN (H.), RAO (G.P.) -   Continuous-time approaches to system identification - a survey.  -  Automatica, 26(1) : 23-35 (1990).

  • (5) - SINHA (N.K.), RAO (G.P.) -   Identification of continuous-time systems. Methodology and computer implementation.  -  Kluwer Academic Publishers, Dordrecht (1991).

  • (6) - GARNIER (H.), MENSLER (M.), RICHARD (A.) -   Continuous-time...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS