Article | REF: F1501 V1

Dairy effluent treatment

Authors: René MOLETTA, Michel TORRIJOS

Publication date: March 10, 1999

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHORS

  • René MOLETTA: Doctor-Engineer - Research Director - Director of the Environmental Biotechnology Laboratory (INRA), Narbonne

  • Michel TORRIJOS: Doctorate in Microbiology - Research engineer at the Environmental Biotechnology Laboratory (INRA), Narbonne

 INTRODUCTION

The first step before considering treating the pollution generated by a production unit in the dairy industry is to carry out a pollution assessment to study the sources of pollution, characterize discharges and try to minimize them.

Effluent pollution treatment

The first stage in wastewater treatment involves the separation of easily recoverable forms of pollution (particles, for example). The aim is to minimize the amount of pollution to be treated in the subsequent treatment process. Dairy industry effluents can therefore undergo various pre-treatments: screening, degreasing and grit removal, with the aim of eliminating particulate pollution.

Dairy effluent, which contains mainly organic pollution in soluble form, can then be spread on agricultural land or treated biologically. In the former case, the pollution is eliminated by soil micro-organisms and plants. In the second case, microbial populations present in biological reactors are entrusted with the task of eliminating the pollution.

There are two main strategies for deploying micro-organisms: aerobic and anaerobic.

The aerobic route uses micro-organisms contained in biological reactors in which oxygen is transferred either naturally or artificially, by means of surface turbines or bottom diffusers.

The oxygen and soluble organic or mineral nutrients (carbon, nitrogen, phosphorus...) that make up the pollution will serve as substrates for the micro-organisms that multiply. A fraction of the soluble pollution is eliminated in gaseous form (CO 2 for example) and the complementary fraction is transformed into insoluble pollution (the micro-organisms). It can be recovered by decantation and forms the sludge.

The techniques used include aerated lagoons, bioreactors applying the activated sludge technique, bacterial filters, sequencing batch reactor (SBR), etc.

This approach consumes energy to transfer oxygen and produces sludge. Between 0.3 and 0.5 kg of sludge (expressed as dry matter) can be produced per kg of chemical oxygen demand (COD) removed, depending on process characteristics.

This technique can produce treated water of a quality compatible with discharge into the natural environment. The management of the resulting sludge often remains a problem. Activated sludge loads range from 0.5 kg of COD per cubic meter of reactor per day for low-load systems to 10 kg of COD per cubic meter of reactor per day for high-load systems.

In anaerobic digestion, polluting organic matter is transformed by micro-organisms in the total absence of...

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Agrifood industry/sector ?

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Dairy effluent treatment