Article | REF: R2745 V1

Infrared thermography and experimental analysis in mechanical engineering

Author: Minh Phong LUONG

Publication date: June 10, 2016, Review date: March 24, 2022

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

In a sustainable development context, mechanical engineering is increasingly faced with practical problems related to irreversible and dissipative processes, inducing aging, damage, degradation, fatigue and failure of materials and structures subjected to loading. The proposed infrared thermography used in experimental analysis offers a non-destructive, non-contact, real-time, easy-to-use technique to test design ideas. The results obtained highlight the advantages of differential infrared thermography, and demonstrate that a realistic understanding of the thermomechanical phenomena detected leads on to innovative and varied applications in the study of the mechanical performance of materials and structures in their environments.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHOR

  • Minh Phong LUONG: Emeritus Research Director, CNRS - Solid Mechanics Laboratory, École Polytechnique, Palaiseau, France

 INTRODUCTION

In the design and development department, the mechanical engineer designs the overall architecture of an industrial product, chooses technical options and carries out numerical and experimental simulations to subject materials, parts and structures to different types of loading. As experience is often considered the best teacher (usus magister est optimus), experimental analysis offers a convenient means of understanding, identifying and drawing out the main themes of industrial engineering, and providing solutions to the mechanical problems encountered while respecting sustainable development.

This requires a clear and coherent physical basis for the realistic validation of mathematical or numerical models of the problem. These are obtained by detecting, identifying and analyzing concrete problems linked to the irreversible and dissipative processes responsible for aging, damage, degradation, fatigue and failure of materials and structures under load.

Infrared thermography offers a non-destructive, non-contact technique that can be used in real time and is easy to implement to verify dimensioning hypotheses. It is of interest to many mechanical engineering disciplines, such as aeronautics, biomechanics, biomedical technologies, sports engineering, civil engineering, earthquake engineering, automotive engineering, technological innovation, intelligent materials and structures, building thermics, space technologies, etc.

The applications of infrared thermal methods have been the subject of numerous publications over the last few decades, thanks to constant and significant improvements in thermographic equipment, aided by ever more powerful microcomputers. They are based on heat transfer mechanisms. A great deal of research has been carried out to characterize various metals and non-metallic materials, subjected to fracture, non-destructive testing or vibration, or to detect plastic deformation in crack propagation under monotonic or repeated loading on test bodies, as well as the damage or fatigue mechanisms that precede fracture.

This method of inspection is based on the observation of a thermal map on the surface of the specimen under examination. The amount of energy emitted by infrared radiation depends on the thermal effects generated by thermomechanical coupling and developed under load. The use of digital thermal image processing techniques enables appropriate discrimination of the thermomechanical phenomena to be detected and analyzed correctly within a coherent theoretical framework.

The results obtained highlight a differential infrared thermographic technique and show that a realistic interpretation of the thermomechanical phenomena detected leads to innovative and varied applications...

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

KEYWORDS

infrared thermography   |   Differential thermography   |   Dissipation mechanisms   |   Thermomechanical coupling   |   Damage detection   |   Endurance limit   |   Threshold of admissible damage


This article is included in

Non-destructive testing

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Infrared thermography and experimental analysis in mechanical engineering