Présentation

Article

1 - GÉNÉRALITÉS

2 - STATIQUE

  • 2.1 - Pression
  • 2.2 - Relation fondamentale
  • 2.3 - Fluide isovolume au repos dans le champ de pesanteur
  • 2.4 - Équilibre d’un liquide dans un récipient soumis à une accélération permanente
  • 2.5 - Statique d’un fluide compressible et dilatable

3 - CINÉMATIQUE

  • 3.1 - Description du mouvement selon Lagrange
  • 3.2 - Description selon Euler
  • 3.3 - Écoulement permanent (ou stationnaire)
  • 3.4 - Dérivée particulaire d’une grandeur
  • 3.5 - Étude locale du champ de vitesse
  • 3.6 - Types particuliers d’écoulements

4 - DYNAMIQUE

  • 4.1 - Équations générales de bilan
  • 4.2 - Théorème de la quantité de mouvement
  • 4.3 - Équation de comportement du fluide newtonien
  • 4.4 - Équation du mouvement d’un fluide newtonien
  • 4.5 - Bilans d’énergie
  • 4.6 - Utilisation des bilans globaux simplifiés
  • 4.7 - Traitement des équations de bilan local

5 - SIMILITUDE

  • 5.1 - Système auxiliaire d’unités
  • 5.2 - Équations écrites sous la forme adimensionnelle
  • 5.3 - Expérimentation sur maquette

6 - ÉCOULEMENTS LAMINAIRES ET ÉCOULEMENTS TURBULENTS

  • 6.1 - Modélisation statistique de la turbulence
  • 6.2 - Équation de bilan aux valeurs moyennes

7 - COUCHE LIMITE

8 - FORCES EXERCÉES SUR LES OBSTACLES PAR UN FLUIDE EN MOUVEMENT

9 - ÉCOULEMENTS PERMANENTS MONODIMENSIONNELS EN MÉCANIQUE INTERNE

10 - ÉCOULEMENTS NON PERMANENTS MONODIMENSIONNELS EN MÉCANIQUE INTERNE

11 - ÉCOULEMENTS À SURFACE LIBRE

Article de référence | Réf : A1870 v1

Similitude
Mécanique des fluides

Auteur(s) : Jean GOSSE

Relu et validé le 09 janv. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Jean GOSSE : Docteur ès Sciences - Professeur Honoraire au Conservatoire National des Arts et Métiers

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les bases de la mécanique des fluides sont résumées en insistant sur l’aspect énergétique, car l’ingénieur doit le plus souvent considérer des écoulements de fluides non isothermes. On s’est efforcé de présenter clairement l’unité des concepts qui concernent tous les fluides et dont l’application porte ici uniquement sur les fluides monophasiques newtoniens.

Il est essentiel que l’ingénieur garde toujours un regard critique sur les hypothèses qu’il introduit pour faciliter ses calculs, ou sur l’adéquation de la formule qu’il emploie dans le cas particulier étudié ; la mécanique des fluides est un domaine où le bon sens peut facilement tromper. On doit vérifier le bien-fondé d’une hypothèse après avoir obtenu la solution du problème. Un exemple banal est celui de la détermination du débit d’un écoulement que l’on suppose turbulent pour commencer les calculs ; l’est-il réellement ? Il faut s’assurer, par la valeur du nombre de Reynolds, que l’opportunité d’un écoulement laminaire est exclue.

Des logiciels actuellement commercialisés permettent de résoudre les équations de problèmes techniques complexes. Leur conception a nécessité le respect des bases théoriques mais a introduit des hypothèses et des formules empiriques qui ont leurs limites de validité tout comme les algorithmes de résolution. L’emploi des logiciels requiert la vigilance de l’ingénieur non spécialiste de la mécanique des fluides. Le texte qui suit est composé pour offrir des repères et des moyens de calcul simple permettant une évaluation rapide valable au premier ordre.

Les applications données sont limitées aux cas les plus usuels et le lecteur est évidemment invité à rechercher des approfondissements dans les chapitres signalés dans l’Index Alphabétique Général aux mots clés suivants : acoustique, aviation, aéroacoustique, aérodynamique, aéroréfrigérant, air, caloporteur, canaux, chaleur, climatisation, compressibilité, échangeur de chaleur, écoulements, éjecteurs, fluide, gaz, houle, hydraulique, lubrification, magnétohydrodynamique, thermodynamique, sans oublier le domaine des mesures.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-a1870


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

5. Similitude

Depuis Newton, Fourier, Ampère et beaucoup d’autres, la question des dimensions des entités du monde physique a été âprement débattue : une entité a‐t‐elle une dimension intrinsèque ? On sait aujourd’hui que c’est la nature de l’entité qui est intrinsèque et que la dimension est variable selon le système d’unités choisi en référence pour la décrire. La convention internationale a fixé le système international d’unités SI mais, pour traiter de la similitude, il faut occasionnellement s’affranchir de cette obligation.

La similitude a pris une grande importance lorsqu’en 1883 O. Reynolds a trouvé expérimentalement qu’un écoulement d’eau dans un tuyau change de structure lorsqu’un groupement sans dimension de grandeurs physiques, appelé depuis nombre de Reynolds, prend une certaine valeur critique. Et au début du XXe siècle, l’école allemande de mécanique des fluides a développé la représentation des phénomènes à travers des groupements sans dimension.

Les concepts de l’analyse dimensionnelle ont été clarifiés et les deux voies pratiques qui se sont développées sont résumées ici : tout d’abord la réduction des équations à une forme adimensionnelle et ensuite les essais sur maquettes.

5.1 Système auxiliaire d’unités

Une équation quelconque est dimensionnellement homogène, c’est‐à‐dire que tous ses monômes ont la même dimension. Pour mettre cette équation sous une forme adimensionnelle, on définit, à partir de grandeurs physiques, un système auxiliaire d’unités qui doit être cohérent par rapport au système fondamental longueur L, masse M, temps et température T du système légal (l’ampère n’intervenant pas ici).

Soit Gi (i = 1, 2, 3, 4) les quatre grandeurs physiques auxiliaires choisies. On connaît les dimensions de Gi par rapport aux unités primaires L, M, , T :

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Similitude
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BAKHMETEFF -   Hydraulics of open channels.  -  McGraw-Hill (1932).

  • (2) - BRADSHAW (P.), CEBETI (T.), WITHELAW (J.H.) -   Engineering calculation methods for turbulent flows.  -  Academic Press (1981).

  • (3) - BRUN (E.A.), MARTINOT-LAGARDE (A.), MATHIEU (J.) -   Mécanique des fluides.  -  3 vol., Dunod (1970).

  • (4) - CANDEL (S.) coord -   Cours de mécanique des fluides.  -  Dunod, 2e édit. 1995 ; Problèmes résolus de mécanique des fluides, Dunod (1995).

  • (5) - CEBETI (T.), BRADSHAW (P.) -   Physical and Computational Aspect of Convective Heat Transfer.  -  Springer-Verlag (1984).

  • (6) - COMOLET (R.) -   Mécanique expérimentale des fluides.  -  3 vol., Masson, 2e éd. (1976).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS