Présentation
En anglaisAuteur(s)
-
Albert COHEN : Université Pierre-et-Marie-Curie, Laboratoire d’analyse numérique, Paris
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Apparues au début des années 1980, tout en prenant leur source dans des travaux plus anciens, les ondelettes s’imposent aujourd’hui comme des outils puissants en analyse mathématique et dans des domaines plus appliqués tels que le traitement du signal et de l’image, ou encore la simulation numérique. Cet article vise à introduire le lecteur à ces outils et à leur mise en œuvre pratique dans la perspective de ces applications.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Représentations en fréquence
1.1 Représenter les fonctions
Il convient tout d’abord de préciser le sens du mot « outil ». Les mathématiques disposent aujourd’hui d’une multitude de techniques visant à effectuer l’analyse, la synthèse et la représentation de fonctions quelconques à l’aide de « briques de bases » élémentaires. Ces techniques d’analyse harmonique au sens large sont parfois associées à des algorithmes performants, ce qui leur confère un intérêt supplémentaire pour les applications numériques.
L’exemple le plus fondamental est certainement celui de la transformée de Fourier connue depuis le XIXe siècle : celle-ci consiste tout d’abord à effectuer l’analyse en fréquence d’une fonction f (t ), par la formule :
Sous des hypothèses convenables sur f, la fonction est ainsi bien définie et elle permet la synthèse de f par la formule d’inversion :
Dans cet exemple, les « briques de bases » sont données par les fonctions eω (t ) = e iωt, . Chacune de ces fonctions est une oscillation pure à la fréquence ω, et la combinaison de ces briques affectées des poids permet de « reconstruire...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Représentations en fréquence
BIBLIOGRAPHIE
-
(1) - DAUBECHIES (I.) - Ten Lectures on Wavelets. - SIAM, Philadelphie (1992).
-
(2) - MEYER (Y.) - Ondelettes. Algorithmes et Applications. - Armand Colin, Paris (1992).
-
(3) - GASQUET (Y.), WITOMSKI (P.) - Analyse de Fourier et applications au traitement du signal. - Masson, Paris.
-
(4) - MARR (D.) - Vision. - Freeman, New York (1982).
-
(5) - MALLAT (S.) - A wavelet tour of signal processing. - Academic Press, New York (1998).
-
(6) - DAUBECHIES (I.) - Orthonormal bases of compactly supported wavelets. - Comm. Pure and Appl. Math. 41, 909-996 (1988).
-
(7) - COHEN (A.), DAUBECHIES (I.), FEAUVEAU...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive