Présentation
EnglishRÉSUMÉ
La géométrie convexe est la branche de la géométrie traitant des ensembles convexes, principalement dans les espaces euclidiens. Les ensembles convexes se produisent naturellement dans la géométrie et dans beaucoup de domaines mathématiques : analyse convexe, analyse fonctionnelle, géométrie calculatoire, géométrie discrète, géométrie intégrale, géométrie des nombres, géométrie stochastique, programmation linéaire, stéréologie, théorie des jeux, théorie des probabilités,etc. La géométrie convexe concerne aussi d'autres disciplines scientifiques et techniques (e.g. biologie, chimie, cosmologie, géologie, pharmacie, physique...) où les objets élémentaires (cellules, corpuscules, grains, particules, planètes...) sont souvent considérés comme des ensembles convexes. Ce premier article porte sur les principales définitions et propriétés et des théorèmes fondamentaux concernant les ensembles convexes et plus largement sur les ensembles étoilés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France
INTRODUCTION
La géométrie convexe (Convex Geometry) est la branche de la géométrie traitant des ensembles convexes, dans les espaces vectoriels et les espaces vectoriels topologiques en général, et plus particulièrement dans les espaces vectoriels normés et surtout hilbertiens (en dimensions infinies) et euclidiens (en dimensions finies).
Duale de la géométrie convexe, l’analyse convexe (Convex Analysis) est la branche des mathématiques qui traite des fonctions convexes , qui interviennent souvent en théorie de l’optimisation.
Toute notion introduite pour les ensembles convexes se transporte généralement aux fonctions convexes par l’intermédiaire de leurs épigraphes. L’inverse est également vrai : toute notion introduite pour une fonction convexe peut souvent se transporter aux ensembles convexes en l’appliquant à la fonction indicatrice de ces ensembles.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
12. Polytopes convexes et simplexes de …
Ci-dessus : Polytopes convexes et simplexes de
Les polygones (dimension 2) et les polyèdres (dimension 3) sont connus depuis l’antiquité (Sumériens, Babyloniens, Égyptiens, Grecs (Démocrite, Eudoxe de Cnide, Théétète, Euclide…)) (p. 243 de ). L. Schläfli a été le premier à considérer en 1852 des analogues de polygones et de polyèdres en dimension supérieure à 3 (p. 7 de ). En 1882, R. Hoppe, inventa le mot « polytop » (en allemand) pour désigner ce concept plus général.
Remarque (ambiguïté de la définition des polytopes) : Le terme polytope admet plusieurs définitions au sein des mathématiques. Dans le présent article, l’auteur a retenu la définition historique.
L’ouvrage de P. R. Cromwell propose une présentation historique et dissertative des polyèdres et secondairement des polygones . L’ouvrage classique de référence est .
12.1 Polytopes convexes
Définition (polytope convexe). Dans ...?xml>
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Polytopes convexes et simplexes de …