Présentation
En anglaisAuteur(s)
-
Jean-Pierre BROSSARD : Professeur de mécanique à l’Institut des sciences appliquées (INSA) de Lyon
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La théorie des fonctions (maximales et minimales) fournit les bases de ce que l’on peut appeler l’optimisation statique. L’optimisation dynamique permet de traiter des problèmes d’extrémum beaucoup plus généraux.
Les problèmes d’optimisation dynamique trouvent leur source historiquement en mécanique générale. C’est pourquoi nous consacrons un article à ce problème. Il est basé sur le calcul des variations dont les fondateurs sont Euler et Lagrange. Les équations de Lagrange – lorsque le système est lagrangien – sont identiques aux formules d’Euler. Les premiers problèmes formulés sont dus à Newton (forme des corps donnant une traînée minimale) et Bernoulli (problème de la brachistochrone).
Un problème d’optimisation dynamique repose sur deux éléments fondamentaux :
-
un modèle théorique représentant la nature du problème en mécanique. Ce modèle est fourni par le système d’équations différentielles et d’équations de liaisons ;
-
une quantité dont on veut rendre la valeur maximale ou minimale. C’est ce que l’on appelle le critère d’optimisation ou l’indice de performance.
L’existence, depuis très longtemps, d’un modèle mathématique est la cause fondamentale de la naissance en mécanique de la théorie de l’optimisation. L’article qui lui est consacré a un double but : d’une part, donner une introduction aux problèmes d’optimisation et, d’autre part, donner un outil directement utilisable. Nous avons laissé de côté le choix des critères et les techniques particulières de l’optimisation.
Cet article fait partie d’un ensemble d’articles traitant de la Mécanique générale ; le lecteur devra donc se reporter assez souvent aux développements mathématiques étudiés précédemment dans la rubrique Dynamique générale et en particulier aux articles :
-
Mécanique générale- Dynamique générale. Forme vectorielle Mécanique générale. Dynamique générale. Forme vectorielle ;
-
Mécanique générale- Dynamique générale. Forme analytique Mécanique générale. Dynamique générale. Forme analytique,
de ce traité.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
10. Extension du problème de Lagrange
10.1 Fonctionnelle dépendant d’une seule fonction
Jusqu’ici, nous avons considéré que les fonctions admissibles comme extrémales étaient continues ainsi que leurs dérivées premières. Nous allons élargir les fonctions admissibles à la classe des fonctions continues et pourvues de dérivées premières continues par morceaux, c’est-à-dire que les dérivées premières sont continues sauf en un nombre fini de points. L’extrémale a alors un point anguleux. On parle d’extrémale brisée.
HAUT DE PAGE
Considérons l’intégrale .
Proposons-nous de trouver une fonction continue y (x ) telle que y (0) = 0 et y (2) = 1 et qui rende J extrémale.
La formule d’Euler donne .
On en déduit y ’ = Cte et y = C1 x + C2 . On obtient une famille de droites.
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Extension du problème de Lagrange
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive