Présentation
En anglaisRÉSUMÉ
Ce dossier expose quelques bases des méthodes de volumes finis qui sont des méthodes de discrétisation numérique très utilisées pour les problèmes de mécanique des fluides au sens large et pour les problèmes dont les équations de base présentent d'importantes non-linéarités. Le principe de base consiste à calculer la variation de l'intégrale des quantités moyennes dans des cellules géométriques. L'interaction numérique entre les cellules se détermine grâce à des flux numériques. Plusieurs exemples sont détaillés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
We present the foundations of Finite Volume Methods: this family of discretization techniques is very useful in Computational Fluid Mechanics and for all problems whose PDE formulations are highly nonlinear. The design principle consists in the calculation of averaged quantities in geometric cells. The time variation of these averages is calculated with numerical fluxes. We detail some examples.
Auteur(s)
-
Bruno DESPRES : Professeur de mathématiques à l'université Pierre et Marie Curie - Conseiller scientifique au Commissariat à l'Energie Atomique
-
Nicolas SEGUIN : Maitre de conférence en mathématiques à l'université Pierre et Marie Curie
INTRODUCTION
Les méthodes de volumes finis sont en quelque sorte complémentaires des méthodes de différences finies [AF 501] et des méthodes d'éléments finis [AF 503] [AF 504] [AF 505]. La structure de données est en effet très proche de celle des différences finies lorsque ces méthodes sont utilisées sur un maillage cartésien, tout en autorisant une plus grande souplesse géométrique sur les maillages non cartésiens comme cela est le cas pour les méthodes d'éléments finis. Les méthodes de volumes finis sont aussi très utilisées pour la discrétisation numérique des équations aux dérivées partielles non linéaires, telles que les équations de la dynamique des gaz compressibles. Ce sont aussi des méthodes très robustes. Ces propriétés expliquent leur intérêt. Cependant le principe de construction qui s'appuie sur des formules intégrales plutôt que différentielles ou faibles est différent des méthodes de différences finies ou d'éléments finis.
L'objet de ce dossier est de présenter le plus simplement possible quelques règles de construction de divers schémas de volumes finis. Les aspects les plus techniques qui concernent les preuves de convergence ne sont pas abordés.
KEYWORDS
Finite Volumes" | Numerical fluxes" | Second Order Reconstruction"
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Exemples en dimension 1
La dimension 1 d'espace a l'avantage que certaines difficultés habituellement présentes dans l'analyse des méthodes de volumes finis sont absentes. Pour autant la technique de construction apparaît clairement et sert de guide pour des cas plus complexes.
1.1 Transport
Comme son nom l'indique, l'équation du transport modélise le « transport » d'une quantité notée c, comme concentration, sous l'action d'un champ de vitesse noté ν, comme vitesse. Nous distinguons le cas d'un champ de vitesse constant, auquel cas il s'agit de l'équation d'advection.
HAUT DE PAGE
L'équation d'advection sans second membre s'écrit ∂t c + ν∂xc = 0. La vitesse étant constante, la solution exacte est c (x, t) = c0 (x − νt) où la fonction c0 est la donnée initiale : c'est-à-dire que c (x, 0) = c0 (x). Le premier pas dans la discrétisation sous forme de volumes finis consiste à réécrire sous une forme dite divergente dans laquelle tous les termes en espace apparaissent derrière la dérivée en espace, soit ∂t c + ∂xf (c) = 0 avec f (c) = νc.
Ensuite il faut se donner un maillage sous la forme d'un recouvrement du domaine de calcul en cellules Tj = (xj−1/2, xj+1/2) de taille quelconque. Bien sûr en dimension 1 d'espace il est plus naturel de prendre de cellules de taille hj = xj+1/2 − xj−1/2 toutes identiques, hj = h > 0 pour tout j, cependant le fait de prendre des cellules de taille variable aide à mieux comprendre le principe général et à ne pas confondre avec le principe de construction des méthodes de différences finies. Une quantité importante est alors l'intégrale de la variable c dans la cellule au pas de temps tk = kΔt, soit ...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemples en dimension 1
BIBLIOGRAPHIE
-
(1) - EYMARD (R.), GALLOUET (T.), HERBIN (R.) - Finite Volume methods - Handbook of Numerical Analysis (2000).
-
(2) - DUBOIS (F.), DESPRES (B.) - Systèmes hyperboliques et dynamique des gaz, application à la dynamique des gaz - Éditions de l'École Polytechnique (2005).
-
(3) - DESPRES (B.) - Lois de conservation Eulériennes, Lagrangiennes et méthodes numériques - Mathématiques et Application 68, Springer (2010).
-
(4) - KUZMIN (D.), LOHNER (R.), TUREK (S.) - Flux-corrected transport : principles, algorithms and applications - Springer, Scient. Comp. (2005).
-
(5) - LEVEQUE (R.J.) - Finite Volume Methods for Hyperbolic Problems - Cambridge University Press (2002).
-
(6) - BARTH (T.), OHLBERGER (M.) - Finite volume methods : foundation and analysis - Encyclopedia...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive