Présentation
EnglishRÉSUMÉ
On utilise la méthode des volumes finis pour résoudre les équations de Navier-Stokes. L’article comprend deux parties distinctes. La première présente la méthode de discrétisation pour résoudre les problèmes de diffusion et de convection-diffusion 1D, 2D et 3D sur des maillages structurés ou non ainsi que la semi-discrétisation en temps pour ensuite aboutir à des schémas explicites et implicites en temps pour résoudre l’équation de la chaleur. La seconde partie présente la résolution des équations cibles par la méthode des volumes finis. En fait cela revient à résoudre des équations de diffusions couplées à des équations de convection-diffusion ; en utilisant les résultats de la première partie, on présente et on compare entre eux divers algorithmes de résolution.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre SPITERI : Professeur émérite - Université de Toulouse, INP – ENSEEIHT - IRIT, Toulouse, France
INTRODUCTION
Dans cette série d’articles consacrée à la résolution numérique des équations de Navier-Stokes on présente plusieurs méthodes de résolution basées sur plusieurs types de méthode de discrétisation des équations aux dérivées partielles. On a déjà présenté :
-
d’une part la méthode des différences finies où l’on remplace les dérivées par des quotients différentiels [AF 1 404] ; cette méthode correspond à l’expression d’un équilibre des quantités représentées par le modèle physique en chaque point du maillage ;
-
d’autre part la méthode des éléments finis [AF 1 407] où après avoir donné une formulation équivalente du problème via la formule de Green dans un espace de fonctions tests approprié, ce qui correspond en gros à une extension de la formule d’intégration par partie généralisée (ou encore de façon plus générale à l’utilisation de la dérivation au sens des distributions) et aboutit à l’application du principe des travaux virtuels, on décompose la solution dans une base finie bien adaptée numériquement ; cela revient à projeter la solution exacte d’un espace de dimension infinie sur un espace de dimension finie [AF 503] [AF 504] [AF 505] ; cette méthode des éléments finis présente l’avantage de pouvoir résoudre l’équation de Navier-Stokes sur des maillages non structurés et de plus elle est bien adaptée lorsque le domaine Ω est de forme quelconque avec une frontière ∂Ω courbe ;
-
il existe d’autres méthodes de discrétisation comme la méthode des différences finies variationnelles où à partir de la formulation équivalente précédente du problème via le principe des travaux virtuels, on recherche la valeur moyenne de la solution sur de petites cellules constituant le maillage de discrétisation. Cependant cette méthode est très peu utilisée par les ingénieurs et par conséquent elle ne sera pas exposée.
MOTS-CLÉS
formulation vitesse-pression maillages décalés maillages structurés équation de la chaleur comportement d'un fluide
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Résolution des équations de diffusion et de convection-diffusion par la méthode des volumes finis
Depuis 1970 est apparu une nouvelle méthode qui actuellement connaît un réel succès compte tenu de sa facilité de mise en œuvre. Il s’agit de la méthode des volumes finis qui est basée sur un autre principe de formulation équivalente du problème distinct que celui utilisé dans la méthode des éléments finis, par utilisation de la formule d’Ostrogradsky, également appelé théorème de la divergence. On rappelle ci-dessous la formule d’Ostrogradsky qui constitue donc le théorème de la divergence :
où est la normale orientée vers l’extérieur au domaine Ω conformément au schéma de la figure 1.
Ci-dessus : Représentation du domaine Ω et de la normale
La méthode des volumes finis est applicable pour des problèmes tridimensionnels, bidimensionnels et unidimensionnels. On considère un maillage du domaine Ω constitué soit par des volumes finis qui sont des petits volumes tridimensionnels disjoints entre eux dans le cas tridimensionnel, soit des surfaces disjointes entre elles dans le cas bidimensionnel, soit des segments disjoints entre eux dans le dernier cas et dont la réunion constitue le domaine Ω dans ces trois cas. Ces petites cellules sont appelées...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Résolution des équations de diffusion et de convection-diffusion par la méthode des volumes finis
BIBLIOGRAPHIE
-
(1) - BAZILEVS (Y.), TAKIZAWA (K.), TEZDUYAR (T.) - Computational fluid – structure interaction, - Wiley (2013).
-
(2) - BREZINSKI (C.) - Algorithmes d'accélération de la convergence. Étude numérique. - Éditions Technip, Paris, 2000, 404 pages.
-
(3) - CHAU (M.), SPITERI (P.), BOISSON (H.C.) - Parallel numerical simulation for the coupled problem of continuous flow electrophoresis, - Int. J. for Numerical methods in fluids, vol. 55, pp. 945-963 (2007).
-
(4) - CHAU (M.), SPITERI (P.), GUIVARCH (R.), BOISSON (H.C.) - Parallel asynchronous iterations for the solution of a 3D continuous flow electrophoresis problem, - Computers and fluids, vol. 37, pp. 1126-1137 (2008).
-
(5) - CHAU (M.), GARCIA (T.), SPITERI (P.) - Asynchronous grid computing for the simulation of the 3D electrophoresis coupled problem, - Advances in engineering software, vol. 60-61, pp. 111-121 (2013).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive