Présentation
EnglishRÉSUMÉ
La résolution des équations aux dérivées partielles (EDP) est au cœur de la compréhension de nombreux phénomènes physiques. De la simulation aéronautique à l'imagerie, en passant par la prévision météorologique, les EDP sont présentes dans de nombreux domaines appliqués de l'ingénierie et de la physique. Dans ce dossier, seront analysés certaines équations importantes, comme par exemple celles de Navier-Stokes, d'Euler, de Boltzmann, d'Helmholtz, de Kortweg et de De Vries, ou encore des modèles de turbulence.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Claude BARDOS : Professeur émériteLaboratoire Jacques-Louis Lions, Université Pierre et Marie Curie
-
Thierry PAUL : Directeur de recherche CNRSCentre de mathématiques Laurent Schwartz, École polytechnique
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Dérivation des équations de champ moyen : Vlasov et Schrödinger non linéaire
La dérivation de l’équation de Boltzmann à partir de la mécanique hamiltonienne privilégie les interactions à deux corps entre molécules.
Une situation mathématiquement différente, mais importante pour les problèmes d’électromagnétisme et de plasma, est celle où chaque particule est soumise à la « moyenne des actions des autres ». Cela correspond, dans le cas de la mécanique classique, au système hamiltonien, pour les variables habituelles XN = (x 1, x 2… xN ), VN = (v 1, v 2… v N),
et, dans le cas de la mécanique quantique, au système :
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Dérivation des équations de champ moyen : Vlasov et Schrödinger non linéaire
BIBLIOGRAPHIE
-
(1) - ARNOL’D (V.) - Méthodes mathématiques de la mécanique classique - MIR, Moscou (1976).
-
(2) - ALINHAC (S.), GERARD (P.) - Opérateurs pseudo-différentiels et théorème de Nash-Moser - InterÉditions-CNRS, Paris (1991).
-
(3) - BEREZIN (F.), SHUBIN (M.) - The Schrödinger equation - Kluwer, London (1991).
-
(4) - BREZIS (H.) - Analyse fonctionnelle : théorie et applications - Masson, Paris (1983).
-
(5) - CERCIGNANI (C.) - Ludwig Boltzmann : the man who trusted atoms - Oxford University Press, Oxford (1998).
-
(6) - COURANT (R.), HILBERT (D.) - Methods of mathematical physics - Interscience Publishers, New-York (1953).
-
...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive