Présentation

Article

1 - ÉQUATION DES ONDES

  • 1.1 - Contexte
  • 1.2 - Résultats globaux
  • 1.3 - Formules explicites
  • 1.4 - Analyse à haute fréquence
  • 1.5 - Application de l’analyse haute fréquence
  • 1.6 - Propriétés spécifiques du problème extérieur et équation d’Helmholtz

2 - ÉQUATIONS DE L’HYDRODYNAMIQUE

3 - MÉCANIQUE MOLÉCULAIRE

  • 3.1 - Équation de Boltzmann
  • 3.2 - De l’équation de Boltzmann aux équations hydrodynamiques
  • 3.3 - Dérivation de l’équation d’Euler compressible
  • 3.4 - Dérivation de l’équation de Navier-Stokes compressible
  • 3.5 - Dérivation de l’équation de Navier-Stokes et d’Euler incompressibles
  • 3.6 - Démonstrations rigoureuses de convergence

4 - DÉRIVATION DES ÉQUATIONS DE CHAMP MOYEN : VLASOV ET SCHRÖDINGER NON LINÉAIRE

5 - ÉQUATION DE KORTWEG ET DE VRIES (KDV) ET SYSTÈMES INTÉGRABLES

  • 5.1 - Contexte
  • 5.2 - Paire de Lax et méthode de Gelfand-Levitan-Marchenko
  • 5.3 - Intégrabilité de l’équation de KdV et systèmes hamiltoniens en dimension infinie
  • 5.4 - Généralisations

6 - ÉQUATIONS DE L’ÉLASTICITÉ

  • 6.1 - Contexte
  • 6.2 - Équations linéarisées et propriétés spécifiques
  • 6.3 - Équation d’Euler-Bernouilli et de Timoshenko

7 - CONCLUSION

Article de référence | Réf : AF191 v1

Conclusion
Équations aux dérivées partielles - Partie 2

Auteur(s) : Claude BARDOS, Thierry PAUL

Date de publication : 10 oct. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La résolution des équations aux dérivées partielles (EDP) est au cœur de la compréhension de nombreux phénomènes physiques. De la simulation aéronautique à l'imagerie, en passant par la prévision météorologique, les EDP sont présentes dans de nombreux domaines appliqués de l'ingénierie et de la physique. Dans ce dossier, seront analysés certaines équations importantes, comme par exemple celles de Navier-Stokes, d'Euler, de Boltzmann, d'Helmholtz, de Kortweg et de De Vries, ou encore des modèles de turbulence.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Claude BARDOS : Professeur émériteLaboratoire Jacques-Louis Lions, Université Pierre et Marie Curie

  • Thierry PAUL : Directeur de recherche CNRSCentre de mathématiques Laurent Schwartz, École polytechnique

INTRODUCTION

Il s'agit ici de la seconde partie de l'article consacré aux équations aux dérivées partielles. Un guide de lecture en début d'article permet de se repérer aisément dans le présent article et dans l'article [AF 190].

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af191


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

7. Conclusion

Ce texte ne peut pas, et ne veut pas, être exhaustif. Les choix effectués dépendent crucialement du goût et des compétences de ses auteurs.

La méthodologie utilisée nous a conduit à insister sur les aspects d’échelle (ordre de grandeurs). Les phénomènes distribués présentés ici font appel à des groupement d’échelles sources d’effets non linéaires. L’analyse d’échelles et la réduction dimensionnelle conduisent à des non-linéarités.

Cette figure 3 suit de haut en bas une analyse cartésienne et non historique. Il faut remarquer que ce sont, bien entendu, les équations macroscopiques qui ont été établies les premières. Cela s’illustre bien avec les équations de poutres et plaques établies par Bernouilli, Sophie Germain et Cauchy, avant que ne soient écrites les équations fondamentales de l’élasticité qui se déduisent, elles, de la mécanique newtonnienne.

De même les équations de Navier-Stokes ont été établies bien avant celle de Boltzmann, le rôle primitif de l’équation de Boltzmann étant de conforter l’hypothèse atomique, en particulier en observant que les coefficients de diffusion et dissipation thermiques déduits de cette équation étaient en conformité avec l’observation macroscopique.

De nos jours le rôle des équations cinétiques de type Boltzmann est devenu depuis peu beaucoup plus technologique. Il ne s’agît plus de justifier un modèle moléculaire, mais bien d’appréhender des propriétés fines de milieux raréfiés (rentrée dans l’atmosphère d’un véhicule spatial, propagation du courant dans un dispositif microscopique, ionisation de l’air entre un CD et sa tête de lecture).

Mentionnons pour finir le manque de mathématisation de la théorie de la turbulence, pourtant systématiquement utilisée (météo, etc.) qui se trouve tout à fait en bas de la figure 3.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ARNOL’D (V.) -   Méthodes mathématiques de la mécanique classique  -  MIR, Moscou (1976).

  • (2) - ALINHAC (S.), GERARD (P.) -   Opérateurs pseudo-différentiels et théorème de Nash-Moser  -  InterÉditions-CNRS, Paris (1991).

  • (3) - BEREZIN (F.), SHUBIN (M.) -   The Schrödinger equation  -  Kluwer, London (1991).

  • (4) - BREZIS (H.) -   Analyse fonctionnelle : théorie et applications  -  Masson, Paris (1983).

  • (5) - CERCIGNANI (C.) -   Ludwig Boltzmann : the man who trusted atoms  -  Oxford University Press, Oxford (1998).

  • (6) - COURANT (R.), HILBERT (D.) -   Methods of mathematical physics  -  Interscience Publishers, New-York (1953).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS