Présentation

Article

1 - DÉFINITIONS ET ENJEUX

2 - RAPPELS SUR LA NUCLÉATION ET LA CROISSANCE EN SOLUTION

3 - POLYMORPHISME ET TRANSITIONS DE PHASES SOLIDES EN SOLUTION

4 - DONNÉES DE BASE À OBTENIR EN LABORATOIRE POUR LE DÉVELOPPEMENT D'UNE PHASE SOLIDE

5 - STRATÉGIES D'OBTENTION ET DE CONTRÔLE D'UNE VARIÉTÉ POLYMORPHIQUE SOUHAITÉE

6 - CONCLUSION

Article de référence | Réf : J2160 v1

Rappels sur la nucléation et la croissance en solution
Polymorphisme et transition de phases solides en solution

Auteur(s) : Denis MANGIN, François PUEL, Stéphane VEESLER

Date de publication : 10 mars 2008

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Denis MANGIN : Docteur Institut National Polytechnique de Grenoble – Ingénieur ENSIC NANCY - Maître de Conférences à l'Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés UMR 5007

  • François PUEL : Docteur Université Claude Bernard Lyon 1 – Ingénieur ESCPE LYON - Maître de Conférences à l'Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés UMR 5007

  • Stéphane VEESLER : Docteur Université Aix Marseille 3 – Ingénieur ESCPE LYON - Directeur de Recherches au Centre de Recherche en Matière Condensée et Nanosciences, CNRS, Marseille Luminy

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

De nombreuses substances peuvent apparaître sous différentes phases solides si les conditions du milieu de croissance le permettent. Ces phases solides peuvent être des polymorphes, des solvates, des isomères, des solides microcristallins et des amorphes.

Cet article est focalisé sur les polymorphes et les « pseudopolymorphes ».

Après des définitions et la présentation d'enjeux liés à l'emploi de polymorphes, nous ferons brièvement quelques rappels sur la nucléation et la croissance de phases cristallines en solution qui sont nécessaires pour comprendre les mécanismes rencontrés permettant d'obtenir préférentiellement une phase solide polymorphique plutôt qu'une autre ou bien qui commandent le faciès final des cristaux produits. La troisième partie sera également consacrée aux transitions de phases solides, en particulier le polymorphisme. Les fondements thermodynamiques et cinétiques étant posés, la quatrième partie est dédiée aux données de base à acquérir expérimentalement en laboratoire pour le développement de la phase solide souhaitée. Enfin, les stratégies d'obtention et de contrôle d'un polymorphe seront présentées et discutées dans la cinquième partie.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j2160


Cet article fait partie de l’offre

Formulation

(121 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Rappels sur la nucléation et la croissance en solution

Le lecteur trouvera une description plus détaillée des concepts dans la littérature ([1] [J 2 710]). Nous ne donnerons ici que les principales définitions.

2.1 Sursaturation

Si on considère une solution sursaturée, la force motrice de la cristallisation est la différence des potentiels chimiques qu'ont les molécules respectivement dans la solution mère sursaturée µ et dans la solution saturée µs à l'équilibre cristal-solution. Cette différence s'écrit, par mole de molécule qui va cristalliser :

( 1 )

avec :

R
 : 
constante des gaz parfaits,
T
 : 
température.

Pour ne pas compliquer, et introduire les activités, nous écrirons ici sans préciser les unités que le degré de sursaturation β vaut :

( 2 )

avec :

C
 : 
concentration initiale ou actuelle de la phase qui va cristalliser,
Cs
 : 
concentration à saturation ou solubilité.

HAUT DE PAGE

2.2 Nucléation

Lorsque la solution est sursaturée par rapport à une phase cristalline, le soluté...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Formulation

(121 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Rappels sur la nucléation et la croissance en solution
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOISTELLE (R.) -   Actualités néphrologiques  -  . Crosnier J., Funck Brentano J.L., Bach J.F., Grunfeld J.P., Éd. Flammarion Médecine Sciences, 159-202 (1985).

  • (2) - VEESLER (S.), PUEL (F.), FEVOTTE (G.) -   Polymorphism in processes of crystallization in solution  -  . STP Pharma Pratiques 15(1), 53-84 (2005).

  • (3) - SATO (K.) -   Polymorphic transformations in crystal growth  -  . J. Phys. D : Appl. Phys. 26: B77-B84 (1993).

  • (4) - KASHCHIEV (D.) -   Nucleation: Basic theory with applications  -  . Butterworth-Heinemann, Oxford (2000).

  • (5) - OSTWALD (W.) -   *  -  Z. Phys. Chem., 1897, 22, 289 (1897).

  • (6) - CARDEW (P.T.), DAVEY (R.J.) -   The kinetics of solvent-mediated phase transformation  -  . Proc. R. Soc. Lond. A 398: 415-428 (1985).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Formulation

(121 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS