Présentation
EnglishAuteur(s)
-
Denis MANGIN : Docteur Institut National Polytechnique de Grenoble – Ingénieur ENSIC NANCY - Maître de Conférences à l'Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés UMR 5007
-
François PUEL : Docteur Université Claude Bernard Lyon 1 – Ingénieur ESCPE LYON - Maître de Conférences à l'Université Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés UMR 5007
-
Stéphane VEESLER : Docteur Université Aix Marseille 3 – Ingénieur ESCPE LYON - Directeur de Recherches au Centre de Recherche en Matière Condensée et Nanosciences, CNRS, Marseille Luminy
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
De nombreuses substances peuvent apparaître sous différentes phases solides si les conditions du milieu de croissance le permettent. Ces phases solides peuvent être des polymorphes, des solvates, des isomères, des solides microcristallins et des amorphes.
Cet article est focalisé sur les polymorphes et les « pseudopolymorphes ».
Après des définitions et la présentation d'enjeux liés à l'emploi de polymorphes, nous ferons brièvement quelques rappels sur la nucléation et la croissance de phases cristallines en solution qui sont nécessaires pour comprendre les mécanismes rencontrés permettant d'obtenir préférentiellement une phase solide polymorphique plutôt qu'une autre ou bien qui commandent le faciès final des cristaux produits. La troisième partie sera également consacrée aux transitions de phases solides, en particulier le polymorphisme. Les fondements thermodynamiques et cinétiques étant posés, la quatrième partie est dédiée aux données de base à acquérir expérimentalement en laboratoire pour le développement de la phase solide souhaitée. Enfin, les stratégies d'obtention et de contrôle d'un polymorphe seront présentées et discutées dans la cinquième partie.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Polymorphisme et transitions de phases solides en solution
3.1 Courbes de solubilité
Dans un premier temps, considérons un système présentant deux variétés polymorphiques I et II, le polymorphe II étant plus stable que le polymorphe I. Le plus stable possède l'enthalpie libre la plus faible :
À l'équilibre, le polymorphe i (i = I ou II) est en contact avec sa solution saturée. Les enthalpies libres ou les potentiels chimiques sont identiques pour chaque espèce dans la phase solide et dans la phase liquide et devient :
avec :
- µ0 :
- potentiel chimique standard,
- :
- l'activité de la solution en équilibre avec la phase solide polymorphique i.
De on déduit :
avec...
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Polymorphisme et transitions de phases solides en solution
BIBLIOGRAPHIE
-
(1) - BOISTELLE (R.) - Actualités néphrologiques - . Crosnier J., Funck Brentano J.L., Bach J.F., Grunfeld J.P., Éd. Flammarion Médecine Sciences, 159-202 (1985).
-
(2) - VEESLER (S.), PUEL (F.), FEVOTTE (G.) - Polymorphism in processes of crystallization in solution - . STP Pharma Pratiques 15(1), 53-84 (2005).
-
(3) - SATO (K.) - Polymorphic transformations in crystal growth - . J. Phys. D : Appl. Phys. 26: B77-B84 (1993).
-
(4) - KASHCHIEV (D.) - Nucleation: Basic theory with applications - . Butterworth-Heinemann, Oxford (2000).
-
(5) - OSTWALD (W.) - * - Z. Phys. Chem., 1897, 22, 289 (1897).
-
(6) - CARDEW (P.T.), DAVEY (R.J.) - The kinetics of solvent-mediated phase transformation - . Proc. R. Soc. Lond. A 398: 415-428 (1985).
-
...
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive