Présentation
EnglishAuteur(s)
-
Richard GLODKOWSKI : Ingénieur de l’Université de Liège - Chef du Service des Calculs et des Essais de la Société Nordon et Cie
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La révolution industrielle s’est fortement accélérée depuis la dernière guerre et s’est accompagnée de la croissance des moyens qui, à leur tour, ont influencé les méthodes de calcul.
L’apparition de l’ordinateur bouleverse ces dernières et facilite en même temps la transmission du savoir-faire dans le monde entier.
Avant le règne de l’ordinateur les études des tuyauteries se limitaient à des cas très simples. Certains constructeurs, peu nombreux, ont recouru avantageusement à des études sur modèles réduits qui donnent de très bons résultats, mais sont relativement coûteuses et longues.
De plus, l’examen des lignes de conduite se limitait la plupart du temps au calcul des effets de la dilatation thermique sur les efforts et les contraintes dans les tubes. La prise en compte des autres sollicitations telles que le poids ou le vent se faisait au moyen de règles pratiques et de calculs approximatifs.
Avec l’ordinateur, la liste des sollicitations traitées s’allonge et l’on peut aborder les calculs itératifs, impensables autrement, qui permettent de résoudre les problèmes de frottements et de vibrations.
La taille des mémoires de l’ordinateur étant pratiquement sans limite, il se prête aux calculs par les ensembles matriciels qui facilitent énormément la formulation et, par là même, la solution des problèmes de tuyauterie.
Actuellement les calculs des ensembles et plus particulièrement les calculs matriciels sont largement enseignés dans les écoles et dans les universités. Il est donc inutile de les résumer dans cet article, d’autant plus qu’ils sont utilisés ici sous une forme assez élémentaire.
La réponse élastique des éléments des tuyauteries aux diverses sollicitations se manifeste surtout par la flexion, d’où le titre du présent article : Flexibilité.
Ce titre couvre l’ensemble des méthodes de calcul des tuyauteries et ne doit pas être confondu avec la méthode particulière dite de flexibilité basée sur l’aptitude à la déformation des divers membres sous l’effet des charges unitaires.
Pour les équations générales de calcul des structures, le lecteur se reportera à la rubrique spécialisée dans le traité Sciences fondamentales.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Signification et composition des contraintes
8.1 Comparaison entre les contraintes d’origines différentes
L’effet d’une contrainte n’est pas égal à celui d’une autre de même valeur. Par exemple, la contrainte de la membrane dans l’épaisseur d’un tube, sous l’effet de la pression, ne se relaxant pas avec la déformation plastique ou un fluage, est nettement plus dangereuse que celle due à la dilatation thermique. Cette dernière peut dépasser la limite d’élasticité, provoquer une déformation plastique et se relaxer sans conséquences pratiques pour la tuyauterie. En général, les contraintes uniformément réparties dans l’épaisseur du tube sont plus dangereuses que celles de flexion qui peuvent provoquer des dégâts par la répétition cyclique des contraintes, donc uniquement par la fatigue.
Cet état des choses est connu des spécialistes depuis longtemps, mais à défaut de règles claires chaque fois que le problème s’est posé il a été résolu par des ingénieurs plus ou moins intuitivement. Toutefois, l’intuition est capricieuse et pas uniformément répartie entre les hommes ; elle conduit à des solutions qui sont rarement optimales.
Les Américains les premiers ont créé une philosophie de classification des charges suivant leur importance du point de vue de la rupture des tubes. Les charges qui ne se relaxent pas avec la déformation plastique de la tuyauterie (par exemple la pression et les poids) sont placées dans la première catégorie comme étant les plus dangereuses. Elles sont suivies par celles qui diminuent avec le dépassement de la limite d’élasticité du métal comme les dilatations thermiques des tuyauteries et de leurs points de fixation. Les charges et la géométrie des éléments des tuyauteries qui donnent lieu à des contraintes souvent ponctuelles sont classées en troisième position. Elles ne provoquent pas de déformations sensibles mais conduisent lentement à la ruine par fissuration du métal sous la réception cyclique de la charge. Dans ce groupe, on trouve le choc thermique à la surface du tube ou des accidents géométriques tels que changements brusques de dimensions, ouvertures, pièces de connexions, etc., qui donnent lieu à la concentration locale de contraintes.
Les valeurs des contraintes dépendent de l’amplitude du chargement suivant les conditions de calcul et de service.
Les diverses conditions de calcul et de service sont indiquées par le propriétaire de...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Signification et composition des contraintes
BIBLIOGRAPHIE
-
(1) - BROCK (J. E.) - Expansion and flexibility, piping handbook. - McGRAW Hill (1967).
-
(2) - SOULE (J. W.) - The solution of multiple-branch piping. - J. Appl. Mechanics (USA), juin 1956.
-
(3) - SOULE (J. W.) - Tensor flexibility analysis of pipe-supporting systems. - J. Appl. Mechanics (USA), juin 1956.
-
(4) - SOULE (J. W.) - Tensor flexibility analysis of closed-loop piping. - J. Appl. Mechanics (USA), mars 1958.
-
(5) - PECK (L. G.), MEYER (F. F.), STRONG (P. F.), KALSON (H.) - The automatic calculation of forces and deflections in piping systems. - Trans. ASME, janv. 1958.
-
(6) - GLODKOWSKI (R.) - Détermination de la flexibilité des tuyauteries par le calcul matriciel. - Chaleur Ind. (F), mai 1961.
-
...
ANNEXES
1.1.1 Syndicat National de la Chaudronnerie, de la Tôlerie et de la Tuyauterie Industrielle SNCT
Projet de Code SNCT pour la conception, la fabrication, le montage et le contrôle des tuyauteries industrielles 1978.
HAUT DE PAGE1.2.1 American Society of Mechanical Enginers ASME
ASME Boiler and pressure vessel code 1977. Section III. Division 1.
Subsection NB. Class 1 : Components ; Subsection NC. Class 2. Components.
HAUT DE PAGE1.2.2 American National Standards Institute ANSI
ANSI B 31.1.1977 Power Piping.
HAUT DE PAGECet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive