Présentation
En anglaisRÉSUMÉ
Cet article traite des technologies de fabrication additive (FA) appliquées au domaine aéronautique et spatial.
Après avoir décrit l’intérêt de l’aéronautique pour la fabrication additive, les différents moyens actuellement disponibles (technologies, matériaux et formes accessibles) sont présentés.
Les particularités de la chaîne de mise en œuvre de la FA vis-à-vis du secteur aéronautique et spatial sont fournies. Un état des lieux actuel est abordé avant de terminer par le futur de ces technologies.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article deals with additive manufacturing (AM) technologies applied to the aerospace industry.
After outlining the interest of AM for this industrial sector, the various means currently available (technologies, materials and accessible shapes) are presented.
Then, the peculiarities of the AM value chain are explained for this particular sector. Finally, a state of the art of current advances is drawn up, followed by future prospects related to the use of these technologies.
Auteur(s)
-
Marc THOMAS : Ingénieur de recherche, docteur (HDR) - Département Matériaux et Structures – ONERA – Université Paris Saclay (France)
-
Cécile DAVOINE : Ingénieure de recherche, docteur - Département Matériaux et Structures – ONERA – Université Paris Saclay (France)
-
Stefan DRAWIN : Ingénieur de recherche, docteur - Département Matériaux et Structures – ONERA – Université Paris Saclay (France)
INTRODUCTION
D’après la définition ASTM International de 2012, la « Fabrication Additive » (FA) est un procédé d'assemblage de matériaux pour fabriquer des objets à partir d’un modèle 3D, habituellement couche par couche, par opposition aux méthodes de fabrication soustractives, telles que l'usinage traditionnel ou les procédés de mise en forme par moulage ou par déformation plastique comme le forgeage.
La FA permet de produire des pièces près des cotes par apport successif de matière sans la nécessité de construire un outillage spécifique. Ces techniques sont capables dorénavant de fabriquer des pièces métalliques totalement denses et proches des cotes en une seule étape.
Les industriels du secteur aéronautique manifestent un fort intérêt pour différents procédés innovants de FA, car ceux-ci constituent une alternative intéressante en termes de coût et de flexibilité de conception par rapport aux procédés conventionnels.
Pour le secteur aéronautique qui concerne des petites séries de pièces à haute valeur ajoutée, l’intérêt grandissant réside dans la réduction du délai de fabrication et dans l’obtention d’un meilleur rapport buy-to-fly ou mise au mille, ce qui conduit à d’importants gains de coût de production.
Même si le marché (machines, matériaux, services) de la FA, ou impression 3D, reste assez modeste avec 18,5 milliards de dollars en 2020, selon le cabinet Wohlers, par rapport aux 115 milliards d’euros de chiffre d’affaires actuels de la mécanique française, les enjeux industriels n’en demeurent pas moins très forts, en particulier pour le secteur aéronautique. De la part des analystes, les projections font état d’une progression du marché mondial de la FA métal et polymère de 18 % par an jusqu’à 2025 ( ).
En aéronautique, la première innovation technologique offerte par la FA se concrétise par la grande liberté de conception et les possibilités de création de formes jusqu'alors impossibles à réaliser auparavant sans avoir besoin d'outillages coûteux.
La FA permet également de réduire les étapes d'assemblage, de limiter les passes d’usinage, ce qui aboutit à des composants très compétitifs par rapport aux pièces produites avec les technologies traditionnelles (moulage, forgeage, usinage). Certaines pièces complexes sont particulièrement attrayantes en réduisant le nombre total d'éléments à assembler d’un facteur dix, voire plus.
En outre, une fabrication proche des cotes permet de minimiser les étapes de traitement ultérieures.
Les deux marchés d’introduction industriels de la FA en aéronautique concernent la réparation de pièces en service usagées et la fabrication de moules de plus grande précision. La FA s’est introduite dans le marché de la réparation de pièces en utilisant les techniques de rechargement de matière par projection de poudre ou par dépose de fil (§ 4.4.6).
Quant aux moules céramiques obtenus par les procédés additifs, ils sont avantageusement utilisés pour le moulage à la cire perdue d’aubes creuses refroidies (§ 2.4).
Un changement récent s’opère avec un nouveau marché, celui de la production de pièces complexes en petites/moyennes séries qui sont difficilement réalisables par les procédés conventionnels de fabrication.
Le mot d’ordre pour le secteur aérospatial étant l’allègement des structures, une mutation est en cours avec la flexibilité offerte en conception (optimisation topologique), ce qui doit permettre de faire des économies de carburant.
Il faut noter un impact économique et environnemental très important : la réduction d’un kilogramme à la masse de chaque appareil d’une flotte commerciale composée de 200 avions de ligne, permettrait d’économiser chaque année environ 30 000 litres de carburant et aboutirait à réduire les émissions de CO2 dans l’atmosphère de près de 80 tonnes.
L’intérêt économique pour le secteur aéronautique réside aussi dans le gain de matière première puisqu’en additif pratiquement toute la matière consommée est utilisée pour la création de la pièce, sachant aussi que les poudres peuvent être recyclées pour une réutilisation ultérieure.
Il est par ailleurs possible de réduire la consommation « matière » en fabriquant des pièces évidées ou des structures treillis pour lesquelles la répartition des efforts subis par la pièce est optimisée préalablement par la conception assistée par ordinateur (CAO) associée à des calculs par éléments finis.
Grâce à la FA, un autre bénéfice économique est lié à la possibilité de réduire le nombre de pièces de rechange, et ainsi les coûts de gestion des stocks.
Cet article a pour objectif de donner, par le biais de nombreuses illustrations, une vision d’ensemble de la FA vis-à-vis des applications aérospatiales, en la plaçant dans un contexte technico-économique de recherche et de développement et permettant de faire un état des lieux de la stratégie des grands groupes et des partenariats et centres spécialisés en FA.
MOTS-CLÉS
Enjeux alliages aluminium aéronautique polymères Matériaux allégés alliages de nickel 3D impression 3D fabrication additive FA procédé FDM stéréolithographie
KEYWORDS
Stakes | aluminium alloys | aeronautics | polymers | lightweight materials | nickel alloys | 3D | 3D printing | additive manufacturing | AM | FDM process | StereoLithography
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Ingénierie des transports > Systèmes aéronautiques et spatiaux > Structures et matériaux pour l'aéronautique > Fabrication additive en aéronautique et en spatial > Moyens actuels de la fabrication additive
Accueil > Ressources documentaires > Mécanique > Fabrication additive – Impression 3D > Enjeux, procédés et marchés > Fabrication additive en aéronautique et en spatial > Moyens actuels de la fabrication additive
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Moyens actuels de la fabrication additive
2.1 Besoins en aéronautique
Dans le secteur aéronautique, les pièces pouvant faire l’objet de procédés additifs sont extrêmement variées et concernent de nombreux matériaux. Cela peut aller, de la boucle de ceinture d'avion, à la cloison qui sépare la cabine passagers, en passant par les pièces des moteurs.
Le choix du matériau est bien évidemment lié aux propriétés structurales et fonctionnelles qui seront recherchées, avec l’objectif parallèle d'allègement des pièces. Des propriétés thermiques, acoustiques, vibratoires, d’électromagnétisme, peuvent ainsi être recherchées et conduire à utiliser l’une ou l’autre des technologies FA.
Il s’ensuit qu’en aéronautique, les différentes technologies peuvent répondre à cette multiplicité des besoins.
Une certaine limitation réside toutefois au niveau de la taille de certaines pièces et du temps nécessaire pour leur fabrication. Ces durées s’échelonnent suivant le type de technique, allant de quelques cm3 par heure pour les procédés lits de poudres, à quelques centaines de cm3 par heure pour les procédés utilisant du fil.
Pour satisfaire les besoins industriels aéronautiques, il est crucial de maîtriser toute la chaîne de mise en œuvre en FA et ainsi améliorer la robustesse des procédés. La filière d’approvisionnement en matière première (poudre ou fil) constitue ainsi le premier maillon de la chaîne, avec la nécessité de contrôler la composition chimique et de minimiser les défauts structuraux.
La criticité des pièces répondant aux critères de sécurité spécifique à l’aéronautique représente un enjeu considérable et qui nécessite de mettre en place une filière rigoureuse de contrôle des pièces en post-fabrication.
Pour les pièces métalliques, on constate que, si la disponibilité des machines et des poudres n’apparaît plus aujourd’hui comme un frein au développement de la fabrication additive, il existe en revanche un manque de recul et de maturité autour de la caractérisation et de la compréhension d’une métallurgie nouvelle, fortement marquée par l’histoire thermique imposée.
Tout comme les matériaux composites qui ont nécessité de nombreuses années d’études pour gagner la confiance des...
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Moyens actuels de la fabrication additive
BIBLIOGRAPHIE
-
(1) - WEBINAR - Building the future : assessing 3D printing’s opportunities and challenges. - Available at https://portal.luxresearchinc.com/research/report_excerpt/13277 (2013).
-
(2) - THRYFT (R.) - Report : 3D printing will (eventually) transform manufacturing. - Available at http://www.designnews.com/author.asp?doc_id=262205 (2013).
-
(3) - GROSVENOR (L.C.) - Selective laser sintering, birth of an industry. - Available at http://www.me.utexas.edu/news/2012/0712_sls_history.php (2012) (2014).
-
(4) - EOS-GmbH - History. - Available at http://www.eos.info/about_eos/history (2014).
-
(5) - SANDIA-National-Laboratories - Creating a complex metal part in a day is goal of commercial consortium. - Available at http://www.sandia.gov/media/lens.htm.
-
(6) - QI (H.), AZER (M.),...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
-
ADMATEC
-
APIUM
-
ARCAM
-
CARBON3D
-
CONCEPT-LASER
-
DESKTOP METAL
-
IREPA Laser
-
MAKERBOT
-
MARKFORGED
- ...
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive