Présentation
En anglaisAuteur(s)
-
Bruno GEOFFROY : Agrégé de Mécanique - Ancien Élève de l’École Normale Supérieure de Cachan - Ingénieur Recherches et Développement au Moteur Moderne
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La distribution regroupe l’ensemble des organes qui permettent la mise en communication du cylindre avec le milieu extérieur lors des phases de vidange et de remplissage (opérations de transvasement). Sa fonction est de définir la loi d’évolution de la section de passage des gaz brûlés et des gaz frais en fonction de l’angle de rotation du vilebrequin (diagramme de distribution).
La distribution joue évidemment un rôle déterminant en ce qui concerne les performances du moteur. Elle intervient aussi de façon secondaire dans la formation des émissions polluantes. Jointe aux systèmes d’admission et d’échappement, elle définit la perméabilité du moteur et, par conséquent, son remplissage en air en fonction du régime. Elle doit donc autoriser une vidange aussi complète que possible du cylindre et une introduction de la masse maximale d’air frais. Ces deux phénomènes étant fortement dépendants du régime de rotation, la distribution doit être adaptée, par ses caractéristiques et par les solutions technologiques retenues, aux objectifs du moteur : souplesse, puissance spécifique élevée, faible niveau de pollution, etc.
Outre son rôle actif essentiel lors des phases de transvasement, la distribution doit assurer l’étanchéité entre le cylindre et le milieu extérieur pendant le cycle haute pression. Certains de ses organes, au contact direct de la combustion, sont soumis à des contraintes thermiques importantes (la température au cours du cycle pouvant dépasser 2 500 K) et à des pressions élevées (entre 60 et 120 bar selon les cycles). De plus, les résidus de combustion sont une source d’encrassement préjudiciable au bon fonctionnement.
Cet article aborde les différents problèmes liés à la définition d’une distribution à soupapes. Sont traités successivement :
-
l’analyse fonctionnelle établissant les relations qui lient la perméabilité du moteur à la géométrie et à la cinématique des soupapes. Le remplissage du moteur faisant intervenir d’autres facteurs tels que la géométrie des tubulures d’admission et d’échappement n’est pas traité dans cet article ;
-
les principaux critères de dimensionnement des éléments constitutifs de la distribution ;
-
les architectures de distributions à soupapes utilisées sur les moteurs contemporains. Les avantages et les incovénients de chacune d’entre elles sont analysés en fonction des critères préalablement définis dans les deux premières parties.
Les courbes présentées dans cet article ne constituent nullement des abaques de référence mais illustrent, de façon qualitative, l’évolution des différentes grandeurs étudiées.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Différents types de distribution
Depuis la conception des premiers moteurs, de nombreux systèmes de distribution ont été utilisés. Cependant, la recherche de puissances spécifiques toujours plus élevées, d’une fiabilité accrue, et la diminution des coûts de production et des émissions polluantes (dont la consommation d’huile) ont condamné successivement la plupart de ces solutions.
Ce paragraphe décrit les principaux concepts de base à partir desquels ont été imaginées de nombreuses variantes. Actuellement, seules les lumières et les soupapes sont encore utilisées, respectivement pour les moteurs 2 et 4 temps. Les autres solutions sont présentées pour leur intérêt historique.
1.1 Lumières
Le principe consiste à mettre en communication le cylindre avec les conduits d’admission et d’échappement au moyen d’orifices (appelés lumières ) aménagés dans la paroi du cylindre. Ces lumières sont tour à tour dégagées ou masquées par le piston lors de son mouvement.
Les avantages de ce système sont :
-
grande simplicité, faible encombrement et légèreté de la culasse ;
-
absence de pièces en mouvement autres que le piston : pas de problèmes dynamiques de distribution, pas de dissipation d’énergie due à la distribution (entraînement, frottement).
En contrepartie, les principaux inconvénients sont :
-
relative complexité du bloc cylindre ;
-
tenue des segments et des pistons (discontinuité de la surface de contact due aux lumières).
Ce type de distribution est réservé exclusivement aux moteurs 2 temps (figure 1a ) et aux moteurs rotatifs (figure 1b ). Dans le premier cas cependant, une partie de la course du piston est utilisée pour ouvrir et fermer les lumières, ce qui correspond à une perte sur le travail de détente et sur le taux de compression. Dans certaines applications de moteurs 2 temps, un boisseau rotatif (quasi statique), placé juste en aval de la lumière d’échappement et dont la position angulaire varie avec les conditions de fonctionnement du moteur, permet de modifier le diagramme d’échappement.
HAUT DE PAGE...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Différents types de distribution
BIBLIOGRAPHIE
-
(1) - HEYWOOD (J.B.) - International combustion engine fundamentals. - Éd. McGraw Hill International (1988).
-
(2) - Geometric limitations on performance of four valve per cylinder SI engines. - Automotive Engineer, p. 16-18, août/sept. 1984.
-
(3) - WILSON (N.D.) - Combustion effects of asymmetric valve strategies. - Automotive Engineering, p. 49-53, déc. 1993.
-
(4) - RABBIT (R.D.) - Fundamentals of reciprocating engine airflow, Part 1 : Valve discharge and combustion chamber effects. - SAE paper 840337.
-
(5) - ANDRZEJEWSKI (I.), THELLIEZ (M.) - Coefficient de remplissage et taux de gaz résiduels. - Entropie no 134, p. 95-100 (1987).
-
(6) - JEON (H.S.), PARK (K.J.), PARK (Y.S.) - An optimal cam profile design considering dynamic characteristics of a cam-valve system. - Experimental...
ANNEXES
Liste non exhaustive
Torrington France
Ina France
Eaton Automotive S.p.a. http://www.automotive.eaton.com
TRW Automotive http://www.trw.com
Herckelbout Dawson Iberica http://www.comertia.com
Gates France S.A. http://www.gates.com
Bleistahl Produktions GmbH und Co KG http://www.bleistahl.de
HAUT DE PAGECet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive