Présentation

Article

Article de référence | Réf : AM3282 v1

Interactions entre matière organique et faisceau d’électrons
Caractérisation des polymères par microscopie électronique

Auteur(s) : Christopher John George PLUMMER

Date de publication : 10 avr. 2001

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dès l’apparition des premiers microscopes électroniques à transmission (MET), la microscopie électronique a commencé à jouer un rôle clé dans l’étude de la morphologie et de la microdéformation des polymères de synthèse. La microscopie électronique à transmission des polymères s’appuie, pour beaucoup, sur les techniques d’observation de la matière organique développées dans les sciences de la vie (biologie, médecine), domaine où travaillent actuellement la majorité des microscopistes. Préparation spécifique des échantillons et difficultés liées à l’endommagement engendré par le faisceau électronique la caractérise par rapport à celle des autres matériaux (métaux, céramiques). Au contraire, les méthodes utilisées en microscopie électronique à balayage (MEB) sont plus classiques si, comme c’est souvent le cas, son utilisation se limite à l’observation topographique d’une surface. Toutefois, les développements récents comme la microscopie électronique à balayage à haute résolution ou sous pression partielle de vapeur s’annoncent très prometteurs pour certains types d’études spécifiques aux polymères.

Seront présentés dans l’ordre :

  • les interactions entre faisceau électronique et polymère et l’endommagement qui en résulte ;

  • les techniques de préparation d’échantillon les plus courantes ;

  • des modes d’observation particuliers.

Les aspects purement techniques de la microscopie électronique ne seront pas abordés ici pour autant qu’ils n’aient pas de rapport direct avec les polymères de synthèse.

Nota :

Nous remercions Christelle Grein pour la relecture de cet article.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3282


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Interactions entre matière organique et faisceau d’électrons

Les deux principaux types de microscopes dont il sera question sont le microscope électronique à transmission (MET) et le microscope électronique à balayage (MEB).

Dans le MET, l’image est formée par les interactions entre l’échantillon et un large faisceau d’électrons qui le traverse (figure 1a ). Elle est ensuite agrandie par un système de lentilles électromagnétiques. Le pouvoir séparateur maximal est de l’ordre de 0,2 à 0,3 nm pour les MET modernes à moyenne tension (200 à 400 kV). Certains MET fonctionnent également en mode balayage (scanning electron transmission microscopy ou STEM) avec une sonde très fine, ce qui est utile, par exemple, si l’on veut associer la morphologie à l’analyse spectroscopique des rayons X (RX) émis durant l’irradiation.

Dans le MEB, l’image est formée en balayant un faisceau d’électrons accéléré par une tension relativement faible (< 1 à 30 kV) et focalisé sur la surface de l’échantillon (figure 1b ). On se sert habituellement du signal associé soit aux électrons rétrodiffusés (contraste topographique et/ou chimique), soit aux électrons secondaires émis à la surface (contraste essentiellement topographique). Si elle est difficile à appliquer aux éléments légers que contiennent les polymères de synthèse, l’analyse par RX au MEB est aussi largement exploitée pour l’analyse chimique de charges ou d’impuretés inorganiques.

Bien que la manière de former une image soit différente dans le MET et le MEB, les échantillons peuvent subir un endommagement important dû au faisceau électronique avec chacune de ces techniques [1] [2]. Cet endommagement dépend de l’énergie dissipée par unité de volume, qui est proportionnelle à la dose d’électrons q (en C · cm–2) :

q = jt

avec :

j
 : 
densité de courant incidente
t
 : 
temps d’irradiation.

La dissipation provoquée par la densité de courant nécessaire pour former une image de grossissement 200 000 ×...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Interactions entre matière organique et faisceau d’électrons
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GRUBB (D.T.) -   *  -  J. Mater. Sci., 9, p. 1715 (1974).

  • (2) - REIMER (L.) -   Transmission Electron Microscopy.  -  Springer Verlag, Berlin (1993).

  • (3) - DU CHESNE (A.) -   *  -  Macromol. Chem. Phys., 200, p. 1813 (1999).

  • (4) - KRAMER (E.J.) -   *  -  In Adv. Poly. Sci., 52/53, KAUSCH (H.-H.) Ed., Springer Verlag, Berlin, Ch. 1 (1983).

  • (5) - KRAMER (E.J.), BERGER (L.L.) -   *  -  In Adv. Polym. Sci., 91/92, KAUSCH (H.-H.) Ed., Springer Verlag, Berlin, Ch. 1 (1983).

  • (6) - LOESCHE (M.), RABE (J.), FISCHER (A.), RUCHA (U.), KNOLL (W.), MOEHWALD (H.) -   *  -  Thin Solid Films, 117, p. 269 (1984).

  • (7)...

1 À lire également dans nos bases

LE GRESSUS (C.) - Microscopie électronique à balayage. - [P 865] Archives, janv. 1995.

PAQUETON (N.) - RUSTE (J.) - Microscopie électronique à balayage – Principe et équipement. - [P 865] Traité Techniques d'analyse, mars 2006.

LOUCHET (F.) - VERGER-GAUGRY (J.-L.) - THIBAULT-DESSEAUX (J.) - GUYOT (P.) - Microscopie électronique en transmission. Transmission conventionnelle et balayage en transmission. - [P 875] Traité Analyse et Caractérisation, avr. 1988.

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

BAL-TEC AG http://www.bal-tec.com

DIATOME Ltd. http://www.diatome.ch

Electron microscopy sciences http://www.emsdiasum.com/

Energy beam sciences Inc....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS