Présentation

Article

1 - DESCRIPTION DES STRUCTURES DES MATÉRIAUX POLYCRISTALLINS

2 - DÉTERMINATION DE TEXTURES

3 - CONCLUSION

4 - GLOSSAIRE

Article de référence | Réf : M3039 v1

Description des structures des matériaux polycristallins
Texture et anisotropie des matériaux polycrystallins - Diffraction RX, rayonnement synchrotron et neutrons

Auteur(s) : Claude ESLING, Robert SCHWARZER

Date de publication : 10 mai 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La texture cristallographique est la statistique des orientations des cristallites d’un polycristal. Cet article présente les méthodes traditionnelles de détermination de la texture par inversion de figures de pôles, qui sont les distributions de directions cristallographiques particulières, ainsi que les méthodes plus récentes de Rietveld utilisant le spectre de diffraction complet (analyse combinée). L’article présente aussi les techniques de diffraction, notamment de neutrons et rayonnement synchrotron qui permettent en outre de réaliser in situ une cartographie 3D des orientations, avec une excellente résolution angulaire et spatiale au cours de la déformation ou de la recristallisation.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Claude ESLING : Professeur émérite de l’Université de Lorraine, Metz, France

  • Robert SCHWARZER : Professeur retraité de l’Université de Clausthal, Allemagne

INTRODUCTION

La plupart des matériaux utilisés technologiquement ont une structure polycristalline. Leurs propriétés dépendent à la fois de la structure de l’agrégat polycristallin et des propriétés des cristaux qui le constituent. Les propriétés des cristaux sont essentiellement données par le choix des matériaux. La structure de l’agrégat, et donc son influence sur les propriétés des matériaux obtenus, dépend cependant du traitement subi par les matériaux. À cause de l’anisotropie des propriétés cristallines, la statistique de l’orientation des cristallites individuelles et les corrélations de paires de ces orientations (fonctions de corrélation) jouent un rôle prédominant parmi les paramètres d’agrégat du matériau polycristallin. La texture et les grandeurs qui y sont reliées constituent donc d’importants paramètres structuraux à deux points de vue :

  • ils influencent les propriétés des matériaux ;

  • ils évoluent lors du traitement des matériaux.

Les distributions des orientations des cristallites et des corrélations de paires d’orientations peuvent être décrites quantitativement par des modèles mathématiques.

Des normes technologiques définissent les marges de variation maximale autorisées pour les propriétés des matériaux. Ces marges sont d’autant plus étroites que la qualité des matériaux s’accroît ; elles sont particulièrement étroites pour les matériaux dits de haute technologie. Pour cette raison, les propriétés de base des matériaux, telles que leur composition et leur pureté, doivent être contrôlées. Dès que l’incertitude sur les propriétés est inférieure à l’incertitude due à l’anisotropie cristallographique, la texture et les grandeurs qui y sont reliées deviennent les paramètres structuraux dominants ; le contrôle des grandeurs de base étant constamment amélioré, cela s’appliquera tôt ou tard à tous les matériaux polycristallins. En métallurgie, on effectue depuis longtemps des études et des contrôles de texture, mais cela est moins courant pour d’autres types de matériaux, pour deux raisons essentielles :

  • les normes technologiques n’exigent pas vraiment de contrôle des textures dans le domaine des matériaux non métalliques ;

  • les matériaux non métalliques ont des structures cristallines plus complexes, si bien que les analyses de texture de ces matériaux sont plus difficiles, voire quasi impossibles, à réaliser au moyen des techniques conventionnelles.

Ces deux points évoluent constamment, si bien que les études et les contrôles de texture deviennent importants pour tous les matériaux technologiques. Cet article donne la définition des textures et des grandeurs qui y sont reliées, et présente la détermination expérimentale des textures par diffraction des rayons X, par rayonnement synchrotron et par diffraction de neutrons.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m3039


Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Description des structures des matériaux polycristallins

1.1 Structure des matériaux technologiques

Les propriétés des matériaux technologiques cristallisés dépendent de quatre catégories de paramètres de structure (figure 1) :

  • la structure cristalline : la disposition des atomes dans le réseau cristallin ;

  • la structure des phases : la composition et l’arrangement des phases selon leur taille et leur forme ;

  • la structure des grains : l’orientation et l’arrangement des cristallites selon leur taille et leur forme ;

  • la sous-structure : les défauts de réseau et leur répartition à l’intérieur des grains.

HAUT DE PAGE

1.2 Structure des polycristaux, agrégats de cristallites monocristallines

Dans cet article, nous tiendrons particulièrement compte des paramètres correspondant à la troisième catégorie. Un agrégat de ce genre est entièrement décrit par la fonction d’agrégat ou champ d’orientation :

g=g(x) ( 1 )

Elle précise l’orientation cristalline g de chaque petit élément monocristallin de volume dV situé au point x de l’échantillon (figure 2). Par ailleurs, trois types différents de structures d’agrégat peuvent être distingués schématiquement (figure 3) :

  • structure avec des grains à grandes désorientations ;

  • structures avec sous-grains ;

  • structures distordues avec courbure de réseau.

Dans le premier cas, le matériau est constitué de grains bien définis, délimités par des joints de grains à forte désorientation. Dans le deuxième cas, les grains peuvent, en plus, contenir des sous-joints à faible désorientation. Dans le troisième cas, les grains peuvent contenir des structures...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Description des structures des matériaux polycristallins
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BUNGE (H.-J.) -   Texture analysis in material science – Mathematical methods.  -  Butterworth & Co, London (1982).

  • (2) - BUNGE (H.J.), ESLING (C.) -   Quantitative texture analysis.  -  DGM Informationsges. mbH, Oberursel (1982).

  • (3) - ESLING (C.) -   Effets des symétries des cristaux, des échantillons et de la diffraction sur la définition et la détermination de la fonction de texture.  -  Thèse de Doctorat d’État, Université de Metz (1981).

  • (4) - BUNGE (H.J.), SCHWARZER (R.A.) -   Orientation stereology – a new branch in texture research.  -  Advanced engineering materials, 3, p. 25-39 (2001).

  • (5) - MATTHIES (S.) et al -   On the representation of orientation distributions in texture analysis by σ-Sections. I. General properties of σ-sections.  -  Phys. Status Solidi B, Basic Res., 157, p. 71-83 (1990).

  • ...

1 Annuaire

DGM : Deutsche Gesellschaft für Materialkunde https://dgm.de/de/home

FACHAUSSCHUSS Texturen https://dgm.de/de/netzwerk/fach-gemeinschaftsausschuesse/texturen

SF2M : Société française de métallurgie et de matériaux https://sf2m.fr/

Commission thématique texture et anisotropie SF2M/DGM https://sf2m.fr/commissions-thematiques/commission-texture-anisotropie/

HAUT DE PAGE

2 Outils logiciels

Les fabricants d’équipements EBSD fournissent des logiciels sophistiqués et conviviaux pour la mesure et l’analyse quantitative de la texture. En outre, des progiciels et des boîtes à outils sont disponibles auprès de :

ATEX http://www.atex-software.eu/

AstroEBSD https://github.com/benjaminbritton/AstroEBSD

BEARTEX2020 http://eps.berkeley.edu/~wenk/TexturePage/beartex.htm

CrossCourt4 http://www.hrebsd.com/wp/

EBSD-Image https://github.com/ppinard/ebsd-image

(archive avec source Java, projet...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS