Présentation
EnglishRÉSUMÉ
L'exploration de la matière peut se faire à l'échelle atomique grâce à l'interaction entre les atomes et un rayonnement incident, de longueur d'onde comparable ou inférieure aux distances interatomiques. Ainsi, la diffraction des électrons obtenue en pratique avec un microscope électronique délivre des informations d’une grande richesse sur le cristal. Cette technique fait interagir des électrons de haute énergie avec le potentiel cristallin d'un spécimen mince. Après une description sommaire d’un microscope électronique, cet article aborde les techniques utilisées à ce jour dans ces interactions matière et électrons rapides. Un de leur intérêt majeur est le caractère très local de l'information. En effet, il est possible d'obtenir des tailles de sonde de l’ordre du nanomètre.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Richard A. PORTIER : Groupe de métallurgie structurale (UMR CNRS 7045) - École nationale supérieure de chimie de Paris
-
Philippe VERMAUT : Groupe de métallurgie structurale (UMR CNRS 7045) - École nationale supérieure de chimie de Paris
-
Bernard JOUFFREY : Laboratoire MSS-Mat (UMR CNRS 8579) - École Centrale de Paris
INTRODUCTION
Après avoir détaillé les caractéristiques de l'interaction rayonnement-matière et souligné les différences entre le rayonnement électronique, les rayons X et les neutrons dans les dossiers [M 4 125] et [M 4 126], nous allons nous intéresser à la diffraction des électrons obtenue en pratique avec un microscope électronique. Il s'agit donc d'électrons de haute énergie qui interagissent fortement avec le potentiel cristallin d'un spécimen mince dans des situations expérimentales différentes permises par la grande souplesse des conditions d'illumination que l'on peut obtenir avec un microscope moderne.
En premier lieu, à partir d'une description sommaire du principe de base d'un microscope électronique, nous verrons comment se réalisent les conditions de diffraction à l'infini (diffraction de Fraunhoffer [M 4 126]. De ce fait, il sera hautement formateur d'examiner la correspondance « géométrique » entre un objet bidimensionnel connu et son diagramme de diffraction obtenu en en réalisant la transformation de Fourier. Ensuite, nous examinerons les différents modes opératoires pour acquérir l'information dans l'espace réciproque [M 4 125], après avoir sommairement signalé la conséquence fondamentale liée à la diffraction des électrons rapides.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Analyse de Fourier d'images haute résolution numérisées
Une image haute résolution est obtenue en sélectionnant avec le diaphragme situé dans le plan focal arrière (plan de diffraction) de la lentille objectif et centré sur l'axe optique du microscope, un ensemble de faisceaux diffractés autour du faisceau transmis pour une orientation symétrique de Laue. Elle conduit à une reconstitution du module au carré de la fonction d'onde à la face de sortie du spécimen (reconstitution partielle car seules les composantes de Fourier correspondant aux faisceaux sélectionnés sont prises en compte). Les défauts du microscope (aberrations et mise au point) modifient cette image. Il est cependant aisé de la simuler et, si nous connaissons bien les conditions expérimentales (épaisseur de la lame, qualité de son orientation, caractéristiques du microscope), nous pourrons relier l'image à la distribution des atomes dans la structure grâce aux simulations (logiciel JEMS). Ainsi, cette reconstruction de type interférentielle conduit à une distribution de régions claires (contributions en phase) et sombre (contributions en opposition de phase) qui peut être corrélée à la tessellation (arrangement) des colonnes d'atomes ou de groupes d'atomes, ce qui permet une description locale à cette échelle. Notons qu'il faut que les atomes ou les groupes d'atomes soient alignés selon la direction du faisceau incident formant des colonnes et que la distance entre ces colonnes soit dans la limite de résolution du microscope, pour que l'image soit interprétable. Il faut donc se trouver en orientation d'axe de zone pour obtenir une image qui soit interprétable en terme de structure cristalline. Cette image numérisée peut être alors traitée mathématiquement avec un code de traitement de Fourier sur l'ordinateur (Digital Micrograph Gatan par exemple). Il est donc possible d'obtenir le spectre de puissance de régions sélectionnées de petite taille et, ainsi, de reconstruire le diagramme de diffraction du spécimen, non d'un point de vue quantitatif (intensités) mais d'un point de vue géométrique (localisation des pics de diffraction) alors que la diffraction expérimentale est difficilement accessible à cette échelle. Nous allons voir à travers quelques exemples l'intérêt de cette méthode.
6.1 Identification d'une phase non reconnue expérimentalement
Les revêtements céramiques sur les métaux sont du plus haut intérêt car ils permettent d'utiliser des pièces métalliques dans une gamme de température élevée dont...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Analyse de Fourier d'images haute résolution numérisées
BIBLIOGRAPHIE
-
(1) - HAWKES (P.), KASPER (E.) - Principles of electron optics. - Academic Press, vol. 1 & 2 (1989), vol. 3 (1994).
-
(2) - BORN (M.), WOLF (E.) - Principles of optics. - Pergamon Press (1975).
-
(3) - MARECHAL (A.), FRANCON (M.) - Diffraction. Structure des images. - Masson, Paris (1970).
-
(4) - HIRSCH (P.B.), HOWIE (A.), NICHOLSON (R.B.), PASHLEY (D.W.), WHELAN (M.J.) - Electron microscopy of thin crystal. - Butterworths, Londres (1965).
-
(5) - PRESTON (G.D.) - * - Philos. Mag., 26, 855 (1938).
-
(6) - GUINIER (A.) - * - Ann. Phys., 13, 161 (1939).
-
(7) - COWLEY (J.M.) - Diffraction...
DANS NOS BASES DOCUMENTAIRES
(liste non exhaustive)
Electron Diffraction http://www.univ-lille1.fr/lmpgm/Logiciel_JPMorniroli.htm
JEMS http://cimewww.epfl.ch/people/stadelmann/jemswebsite/jems.html
CrystalMaker http://www.crystalmaker.com/
CaRine http://carine.crystallography.pagesperso-orange.fr/
Gatan (Digital Micrograph) http://www.gatan.com/software/
HAUT DE PAGE
(liste non exhaustive)
Jeol http://www.jeol.fr
Zeiss http://www.smt.zeiss.com
Hitachi High-Technologies http://www.hitachi-hitec.com
HAUT DE PAGECet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive