Présentation
EnglishRÉSUMÉ
Le polychlorure de vinyle, PVC, aujourd'hui l'un des polymères les plus utilisés, est aussi le plus difficile à mettre en œuvre et particulièrement à stabiliser du fait de la nature complexe de son mode de dégradation. Le PVC ne peut être mis en oeuvre et utilisé sans stabilisant. La multitude d'applications possibles exigeant des performances spécifiques amène le PVC à être formulé avec une grande variété de stabilisant. Une revue des mécanismes de stabilisation de chaque famille de stabilisants est présentée. Les dernières innovations en matière de stabilisants organiques sont exposées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Anne CHABROL : Ingénieur de l'École Nationale Supérieur de Chimie de Paris ENSCP - Responsable du développement technique et assistance clientèle des additifs pour Emballage PVC et Polymères Techniques, Service Additifs Fonctionnels, Arkema.
-
Stéphane GIROIS : Ingénieur de l'École nationale supérieure de chimie de Paris ENSCP - Docteur ès-sciences des matériaux de l'École nationale des arts et métiers (ENSAM)
INTRODUCTION
Les polymères halogénés et plus particulièrement le polychlorure de vinyle (PVC) sont des polymères tellement particuliers qu'ils méritent d'être traités séparément des autres polymères. Avec une production annuelle mondiale dépassant les 40 millions de tonnes, le PVC est aujourd'hui un des polymères les plus utilisés et les plus versatiles que l'on retrouve dans tous les aspects de la vie quotidienne. Pourtant, le PVC est aussi le polymère le plus difficile à mettre en œuvre et particulièrement à stabiliser du fait de la nature complexe de son mode de dégradation. La stabilisation de ce polymère unique a été, au cours du temps, plus un art qu'une science et s'inscrit dans un concept de formulation pseudo empirique avec d'autres additifs nécessaires à la mise en œuvre. Compte tenu de la diversité des applications du PVC, les stabilisants utilisés sont nombreux et leur choix dépend autant du mode de transformation envisagé que de l'application finale. Les évolutions des réglementations en particulier européennes ont considérablement contribué à la diversification des stabilisants PVC.
Les mécanismes de dégradation du PVC sont encore à ce jour sujet de controverse et la littérature continue de voir se multiplier les publications. Cet article présente les grandes étapes généralement reconnues par les spécialistes en reprenant les défauts de structures responsables de l'instabilité du PVC, l'aspect autocatalytique de la déshydrochloration et l'aspect radicalaire de la thermooxydation.
Le choix des diverses grandes familles de stabilisants du PVC tient compte non seulement des aspects techniques liés à la mise en œuvre mais aussi des avantages et inconvénients de chaque technologie sur l'application et de la réglementation. Chaque famille de stabilisants a ses mécanismes d'action et il n'est pas possible de différencier la stabilisation du PVC de sa formulation complète. Des costabilisants et autres additifs affectent la stabilisation du PVC à des dosages considérés pour la mise en œuvre et la durée de vie du matériau. L'évolution de la réglementation sur les produits chimiques entraîne la disparition progressive de certaines technologies et menace certaines autres. Devant l'impact économique considérable lié au bannissement de stabilisants considérés maintenant comme toxiques, la recherche de stabilisants ne contenant pas de métaux lourds, ou autrement dit tout organiques, continue d'animer les laboratoires de recherche industriels et universitaires.
VERSIONS
- Version archivée 1 de janv. 2004 par Stéphane GIROIS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Formulation du PVC
Il n'est guère possible de parler de la stabilisation du PVC sans parler de la formulation même du PVC. Le PVC est de loin le plus additivé des polymères de grande distribution. La complexité du mode de dégradation du PVC lors de la mise en œuvre oblige le transformateur à concevoir une formulation complexe contenant toute une série d'additifs.
Il est typique dans le monde du PVC que la formulation, appelée traditionnellement compound, soit exprimée en « pour-cent de résine » (pcr) (tableau 4).
Si le stabilisant thermique est absolument nécessaire pour limiter la dégradation thermomécanique du PVC, il n'est pas suffisant. Sans la présence de lubrifiants (internes et externes), le PVC ne pourrait pas se transformer sur les équipements industriels sans se dégrader.
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Formulation du PVC
BIBLIOGRAPHIE
-
(1) - VERDU (J.) - Vieillissement des plastiques - . AFNOR Eyrolles 1984.
-
(2) - GÄCHTER (R.), MÜLLER (H.) - Plastics Additives. - 3rd edition. Carl Hanser 2001.
-
(3) - ZWEIFEL (H.) - Plastic Additives Handbook. - 5th edition. Carl Hanser 1990.
-
(4) - Encyclopedia of PVC - . 2nd edition, Vol. 2, L.I. Nass, C.A. HEIDEBERGER (editor) 1987.
-
(5) - FOLARIN (O.M.), SADIKU (E.R.) - * - International Journal of the Physical Sciences Vol. 6 (18), pp. 4323-4330, 9 September, 2011
-
(6) - WYPYCH (G.) - PVC Degradation and Stabilitzation - . ChemTec Publications, 2008
-
...
DANS NOS BASES DOCUMENTAIRES
-
Amélioration des thermoplastiques. Rôle du compounder
-
REACH : une nouvelle réglementation pour les substances chimiques
NORMES
-
Plastiques. Détermination de l'indice de fluidité à chaud des matières plastiques en masse (MFR) et en volume (MVR) - ISO 1133 - (2005)
-
Plastiques. Détermination de l'indice de fluidité à chaud des matières plastiques en masse (MFR) et en volume (MVR) - ISO 1133/AC1 - (2006)
-
Préparation d'une feuille de PVC pour test de stabilité thermique - ASTM D 2115 - (2004)
-
Test de dégradation thermique dans un four. Méthode du changement de couleur - ASTM D 2115 - (2004)
-
Test de dégradation thermique dans un four. Méthode du changement de couleur - NF EN ISO 305 - (1999)
-
Test de mesure de couleur (indice de jaune) - ASTM D 1925-70 DIN 6167 - (1980)
-
Détermination de la stabilité résiduelle du PVC par déshydrochloruration – Methode du pH - DIN 53381-1 - (1983)
-
...
Sels d'organoétains
Akcros
Baerlocher
Galata (Chemtura)
Reagens
Rohm et Haas
PMC Group
Métaux mixtes
Chemson
Akcros
Galata (Chemtura)
http://www.galatachemicals.com
Reagens
Baerlocher
ADK Palmarole
http://www.adeka-palmarole.com
Lamberti
Akdeniz Kimya
La Floridienne
http://www.flaureachemicals.com/
Sels de plomb
Chemson http://www.chemson.com
Cognis (BASF)
Reagens http://www.reagens.it
Stabilisants...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive