Présentation

Article

1 - HYDROGÈNE DANS L'UNIVERS ET SUR TERRE

2 - USAGES ET PRODUCTIONS ACTUELLES DE L'HYDROGÈNE

3 - APERÇU SUR LES PROCÉDÉS DE PRODUCTION DE BIOÉTHANOL

4 - VAPOREFORMAGE D'ÉTHANOL PUR

5 - VAPOREFORMAGE DE BIOÉTHANOL BRUT

6 - DÉVELOPPEMENT INDUSTRIEL DU VAPOREFORMAGE DE BIOÉTHANOL

7 - ANALYSES DU CYCLE DE VIE. NEUTRALITÉ EN CO2

8 - CONCLUSIONS

Article de référence | Réf : J6369 v1

Développement industriel du vaporeformage de bioéthanol
Production d'hydrogène par reformage du bioéthanol

Auteur(s) : Daniel DUPREZ, Nicolas BION, Florence EPRON

Relu et validé le 01 avr. 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L'éthanol est produit en quasi-totalité par fermentation alcoolique de diverses sources végétales. Le vaporeformage du bioéthanol est une solution alternative pour la production de l'hydrogène. Le dioxyde de carbone, coproduit dans la réaction est, au moins en partie, recyclé dans les plantes par photosynthèse. Le procédé est catalytique et doit s'opérer à haute température (500-800 °C) en raison de l'endothermicité de la réaction. Cet article fait le point sur les développements récents en termes de procédé et de catalyseurs. Le cas du vaporeformage d'éthanol pur est examiné avant d'exposer les applications sur bioéthanol brut dont les impuretés ont un effet fortement désactivant. L'analyse du cycle de vie est également effectuée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Daniel DUPREZ : Ingénieur ENSIC - Directeur de recherche CNRS - Université de Poitiers, CNRS UMR 7285 - Institut de Chimie des milieux et des matériaux de Poitiers (IC2MP)

  • Nicolas BION : Chargé de recherche CNRS - Université de Poitiers, CNRS UMR 7285, Institut de Chimie des milieux et des matériaux de Poitiers (IC2MP)

  • Florence EPRON : Chargée de recherche CNRS - Université de Poitiers, CNRS UMR 7285 - Institut de chimie des milieux et des matériaux de Poitiers (IC2MP)

INTRODUCTION

L'hydrogène est l'élément le plus abondant de l'Univers, mais sur Terre, son abondance est modeste. De plus, sauf exception, il n'existe pas à l'état natif. Il est présent essentiellement dans l'eau, les hydrocarbures fossiles et la biomasse, en association avec l'oxygène et/ou le carbone. Il est très utilisé dans l'industrie et le raffinage, les besoins étant de l'ordre de 50 à 60 MT/an. En revanche, son utilisation en tant que source d'énergie reste marginale. Actuellement, il est préparé industriellement par reformage à la vapeur d'hydrocarbures fossiles (gaz naturel, naphta) ou, dans une moindre mesure, par électrolyse de l'eau. D'autres procédés alternatifs sont également possibles. Le problème principal du vaporeformage est qu'il produit des quantités considérables de CO. En réalité, la réaction permet d'extraire l'hydrogène de l'hydrocarbure et de l'eau, mais une partie importante du carbone est transformé en dioxyde de carbone. Pour s'en affranchir, une solution a été de remplacer la source fossile par une molécule issue de la biomasse et donc globalement « neutre » en CO, le dioxyde de carbone produit pendant le vaporeformage étant recyclé par les plantes lors de la photosynthèse. Beaucoup d'efforts ont porté sur l'utilisation du bioéthanol pour la préparation de l'hydrogène. L'objectif de cet article est de faire le point sur l'utilisation de l'éthanol dans la fabrication de l'hydrogène par vaporeformage. Le procédé est catalytique. La réaction étant endothermique, elle est effectuée à haute température, ce qui nécessite de mettre au point des catalyseurs particulièrement résistants. Le rhodium est un métal de choix mais ses performances dépendent considérablement du support utilisé. Une partie de cet article est consacrée au procédé utilisant de l'éthanol raffiné de grande pureté. Néanmoins, l'utilisation de bioéthanol brut est économiquement plus rentable. Les catalyseurs stables dans l'éthanol « pur » ne le sont plus quand on passe au bioéthanol. Il a donc fallu mettre au point des catalyseurs résistants aux impuretés du bioéthanol. Le système RhNi déposé sur une alumine dopée à l'yttrium s'est révélé très efficace. Les applications industrielles du vaporeformage de l'éthanol sont encore peu nombreuses et posent le problème de la neutralité en CO. De nombreux facteurs peuvent modifier le bilan en CO2 et il est indispensable de considérer les cycles de vie du procédé dans sa globalité à partir de la culture des plantes produisant le bioéthanol. En dépit de bilans très controversés, il semble que la production de l'hydrogène par reformage du bioéthanol reste très avantageuse sur le plan du bilan en CO2 si on s'adresse à du bioéthanol de 2e génération.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j6369


Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Développement industriel du vaporeformage de bioéthanol

L'industrialisation de la production d'hydrogène par reformage de bioéthanol reste très restreinte. La société HyRadix (Eden Energy) s'est associée en 2006 à l'IFP (aujourd'hui IFP Énergies Nouvelles) pour développer des générateurs d'hydrogène à partir d'hydrocarbures liquides à commencer par l'éthanol biosourcé. Ce développement est basé sur la technologie de vaporeformage autotherme du gaz naturel ou du gaz de pétrole liquéfié (GPL), technologie du générateur industriel de H2 Aptus® commercialisé par HyRadix depuis 2005. Les marchés visés sont :

  • l'industrie du verre (fabrication de verre flotté) ;

  • le traitement des métaux (procédé de recuit en métallurgie) ;

  • l'hydrogénation des huiles usagées ;

  • le transport.

Les générateurs d'hydrogène actuellement commercialisés par la compagnie Eden Energy Ltd, propriétaire de la société HyRadix depuis 2007, restent cependant alimentés par le gaz naturel.

Sur la période 2005-2009, deux projets français (BIOPAC2 et BIOSTAR2, site de l'ADEME) financés par l'Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME) et associant des partenaires industriels et académiques ont eu pour objectif d'étudier la faisabilité technique et économique de l'usage du bioéthanol comme carburant alternatif des piles à combustibles de type PEM. Il s'agissait d'applications stationnaires et mobiles, avec comme cible technique le développement d'un système associant un générateur d'hydrogène, un ensemble de purification de l'hydrogène et une pile à combustible. Le projet BIOPAC2 alliait le vaporeformeur à éthanol à un système de purification de H2 via une succession de réacteurs HT-WGS et LT-WGS suivi d'un réacteur d'oxydation préférentielle de CO (PROX) avant la pile à combustible. Le projet BIOSTAR2 se différenciait par le développement d'un réacteur de vaporeformage à membrane permettant la séparation de H2 pour l'alimentation de la pile à combustible et évitant ainsi la succession de réacteurs de purification.

Ces deux études ont montré la faisabilité technique et l'intérêt des différents procédés pour le marché de la cogénération décentralisée (dans le cas d'un réseau électrique...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Développement industriel du vaporeformage de bioéthanol
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BION (N.), EPRON (F.), DUPREZ (D.) -   Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming.  -  Catalysis, Specialist Periodical Report, (J. J. Spivey & K. M. Dooley, Eds) RSC Publishing, vol. 22, p. 1-55 (2010).

  • (2) - BION (N.), DUPREZ (D.), EPRON (F.) -   Design of nanocatalysts for green hydrogen production from bioethanol.  -  Chem Sus Chem, vol. 5, p. 76-84 (2010).

  • (3) - Mc KENDRY (P.) -   Energyproduction from biomass. Part 1 : Overview of biomass.  -  Bioresources Technology, vol. 83, p. 37-46 (2002).

  • (4) - PARIKKA (M.) -   Global biomass fuel resources.  -  Biomass & Bioenergy, vol. 27, p. 613-620 (2004).

  • (5) - AFHYPAC -   Production et consommation d'hydrogène aujourd'hui.  -  Mémento de l'hydrogène. Fiche 1.3. Voir rubrique « Sites Internet ».

  • ...

1 Sites Internet

WIKIPEDIA – Biocarburants http://fr.wikipedia.org/wiki/Biocarburant

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Archer Daniels Midlands (USA) http://www.adm.com

voir en particulier la rubrique « fuel » https://www.adm.com/

Cosan (Bresil) https://www.cosan.com.br/

Eden Energy Ltd http://www.edenenergy.com.au/

Greenfield (Canada) https://greenfield.com/fr/

HAUT DE PAGE

2.2 Organismes (liste non exhaustive)

ADEME – Agence de l'environnement et de la maîtrise de l'énergie http://www.ademe.fr

AFHYPAC – Association française pour l'hydrogène et les piles à combustible ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Hydrogène

(48 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS