Présentation

Article interactif

1 - GÉNÉRALITÉS

2 - PRÉHENSEURS INDUSTRIELS ET TECHNOLOGIES ASSOCIÉES

3 - MAIN HUMAINE COMME RÉFÉRENCE : TAXONOMIE DE PRISES ET PROTHÈSES DE MAIN

4 - DU PRÉHENSEUR INDUSTRIEL À LA MAIN DEXTRE : MODÉLISATION, QUALITÉ DE PRISE ET MANIPULATION COORDONNÉE

5 - IMPORTANCE DU CAHIER DES CHARGES DANS LE PROCESSUS DE CHOIX D’UN PRÉHENSEUR

6 - CONCLUSION

7 - REMERCIEMENTS

8 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : S7765 v2

Préhenseurs industriels et technologies associées
Préhension robotique et manipulation dextre

Auteur(s) : Jean-Pierre GAZEAU

Relu et validé le 02 avr. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La fonction préhension est une fonction essentielle en robotique ; le préhenseur constitue l’interface entre le produit à manipuler et le robot. Pour accompagner le choix d’un préhenseur adapté et sa démarche d’intégration, cet article propose de présenter dans un premier temps les préhenseurs industriels et les technologies associées, et dans un second temps, les enjeux liés à la reproduction de la dextérité propre à la main humaine. Les technologies de préhenseurs industriels, les prothèses de main avec un haut niveau d’intégration et un degré de sous-actionnement élevé, les préhenseurs multidigitaux sont abordés en considérant progressivement les capacités de saisie associées et de manipulation à l’intérieur de la main.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Pierre GAZEAU : Ingénieur de recherche CNRS habilité à diriger des recherches - Institut PPRIME UPR 3346 CNRS – Université de Poitiers – ENSMA

INTRODUCTION

Depuis la naissance du premier robot industriel au début des années 1960, la robotique s’est substituée à l’humain pour de nombreuses tâches souvent pénibles et répétitives dans le monde de l’industrie. Pour répondre à ces enjeux, les robots industriels se sont spécialisés. Ils ont été pensés, dessinés en fonction de la tâche et il en est de même des préhenseurs ou organes terminaux qui équipent ces robots. Au début des années 1980, la tentation de permettre au robot de disposer d’un organe terminal doté de capacités d’universalité a conduit au développement des premières mains robotiques ayant marqué l’histoire de la préhension robotique. L’émergence de la robotique collaborative et des cobots nécessite aujourd’hui le développement de préhenseurs de nouvelle génération, flexibles, dotés non seulement de capacités de saisie adaptative, mais également de capacités de manipulation dextre.

Le modèle de la main humaine par sa richesse fonctionnelle et ses capacités infinies constitue une référence inégalée en termes de préhension et de manipulation dextre. La reproduction de ces fonctions par un système robotisé reste l’un des problèmes les plus complexes à résoudre.

La saisie de pièces et/ou d’objets implique, en fonction de leur nature, la mise en œuvre de systèmes mécaniques adaptés allant du préhenseur industriel dédié à la main robotique à haut niveau de dextérité. La complexité du préhenseur augmentera ainsi en fonction du niveau de flexibilité désiré, depuis la saisie d’objets de formes variées jusqu’à leur manipulation à l’intérieur du préhenseur. Pour assurer l’exploitation du préhenseur, l’intégration de capteurs est nécessaire pour plusieurs raisons : la localisation des surfaces de saisie des objets, la détermination de la configuration de la prise, le contrôle de l’effort de saisie et, plus largement, le contrôle des actions réalisées par le préhenseur.

La commande de ces systèmes doit permettre, à bas niveau, d’assurer, par le pilotage des mouvements du préhenseur et par le pilotage de l’effort d’interaction, la saisie des objets et le maintien d’une configuration donnée.

Pour assurer des fonctions plus complexes, telles que la manipulation d’un objet en bout de doigt, des commandes plus sophistiquées sont mises en œuvre permettant de planifier et contrôler le mouvement coordonné des doigts en interaction avec l’objet. Cette commande coordonnée des doigts constitue déjà en soit un exercice de collaboration entre les robots élémentaires que sont les doigts d’un préhenseur robotisé avec un degré d’actionnement élevé.

L’interaction dynamique du cobot équipé d’un préhenseur avec l’environnement et en particulier avec l’homme vient accroître cette complexité. Des capacités d’adaptation et de perception de l’environnement doivent alors être intégrées dans une commande de plus haut niveau apte à répondre en temps réel ; cette commande s’appuiera en particulier sur l’apprentissage et la mise en œuvre de stratégies de planification réactive.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-s7765


Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Préhenseurs industriels et technologies associées

2.1 Prise des objets

La prise d’un objet définit la configuration des éléments matériels qui concourent à la saisie de l’objet et les efforts qu’ils développent sur l’objet. Pour saisir un objet, on distinguera d’une part, les préhenseurs impliquant un contact avec l’objet, et d’autre part les préhenseurs sans contact.

Dans le cas d’un contact mécanique avec l’objet à manipuler, deux principes physiques différents peuvent être exploités pour produire les efforts de saisie nécessaires (figure 6) : l’adhésion d’une part, et la mécanique du contact objet/préhenseur d’autre part. Ces éléments de contact sont, selon les cas, ponctuels, linéiques ou surfaciques. Ils peuvent développer des forces de saisie unilatérales (forces d’adhésion) ou bilatérales (forces de contact). La définition de la prise constitue une spécification fonctionnelle importante dans la conception ou dans le choix d’un préhenseur. Le choix d’un préhenseur dépend ainsi des propriétés intrinsèques de l’objet (sa géométrie, ses dimensions, son comportement mécanique, les caractéristiques physiques et fonctionnelles des surfaces de l’objet) et aussi de l’encombrement de l’environnement de saisie et de dépose des objets, ainsi que des spécificités de la manipulation des objets.

Si l’on s’intéresse aux préhenseurs sans contact, la saisie peut être assurée par des techniques de lévitation magnétique, optique, aérodynamique ou acoustique . Ces techniques sont particulièrement exploitées dans le « micromonde » en micromanipulation. Dans le présent article, on se focalisera sur les technologies de préhenseurs les plus répandues exploitées dans le « macromonde » à des fins industrielles.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Préhenseurs industriels et technologies associées
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SALISBURY (J.K.) -   Integrated language, sensing and control for a robot hand,  -  in Proceeding of the Third International Symposium on Robotics Research, pp. 54-61 (1985).

  • (2) - WOOD (J.E.), KHUTTI (D.F.), BIGGERS (K.B.), JACOBSEN (S.C.) -   The UTAH/MIT dexterous hand : work in progress,  -  The International Journal of Robotics Research Vol. 3, no. 4, pp. 21-50 (1984).

  • (3) - NIEVES (E.) -   Overview of Collaborative Robots  -  RIA, International collaborative robots workshop, Cincinnati, Ohio USA, octobre 2016.

  • (4) - FALCO (J.) -   A Roadmap to Progress Measurement Science in Robot Dexterity and Manipulation,  -  National Institute of Standards and Technology, US Department of Commerce, mars 2014.

  • (5) - DAFFLON (M.) -   Préhenseurs, conditions et stratégies pour une micromanipulation de precision,  -  Thèse n° 4160, École polytechnique fédérale de Lausanne, Lausanne (2008).

  • ...

NORMES

  • Robots and robotic devices – Safety requirements for industrial robots – Part 1 : Robots - ISO 101218:2011 - Juillet 2011

  • Robots et dispositifs robotiques – Robots coopératifs - ISO/TS 15066:2016 - Février 2016

ANNEXES

  1. 1 Annuaire

    1 Annuaire

    Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

    Transmissions électromagnétiques

    Binder Magnetic : http://www.binder-magnetic.com

    Préhension flexible

    Empire Robotics : http://www.empirerobotics.com

    Fournisseur de systèmes d’automatisation industrielle pneumatiques et électriques

    Festo : https://www.festo.com

    Conception, fabrication d’aimants et de systèmes magnétiques

    Goudsmit magnetics : https://www.goudsmitmagnets.com

    Solutions de manutention

    Ingenitec : https://www.ingenitec.com

    Technologie magnétique

    Magswitch : https://magswitch.com

    Technique du vide

    Novacom : http://www.novacom-vide.com

    Composants pour le vide

    Schmalz : https://www.schmalz.com

    Préhension

    Schunk : https://schunk.com

    Préhenseur souple

    Soft Robotics : https://www.softroboticsinc.com

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 94% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Robotique

    (60 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS

    Sommaire

    QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

    1/ Quiz d'entraînement

    Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

    2/ Test de validation

    Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

    Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Robotique

    (60 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS