Présentation
En anglaisRÉSUMÉ
Cet article tente de montrer comment la théorie des systèmes dynamiques fournit, d'une part, des outils très utiles à la synthèse de contrôleurs stabilisants (théorie des perturbations, commande hiérarchisée, synthèse Lyapounov) et, d'autre part, un guide théorique précieux pour l'analyse de la stabilité et de la robustesse des systèmes non linéaires en boucle fermée (stabilité au sens de Lyapounov, bifurcations, théorie de Poincaré- Bendixon pour les systèmes plans, moyennisation). Le propos a été restreint à la stabilisation de points d'équilibre, mais des méthodes de même nature permettent de traiter la stabilisation autour d'autres types de trajectoires comme les orbites périodiques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article attempts to show how the theory of dynamic systems provides, on one hand, some very useful tools for synthesizing stabilizing controllers (perturbation theory, hierarchical control, Lyapunov synthesis) and, on the other, a valuable theoretical guide for analyzing the stability and robustness of non-linear closed-loop systems (stability in the Lyapunov sense, bifurcations, Poincaré-Bendixson theorem for flat systems, averaging). The scope has been restricted to the stabilization of equilibrium points, but similar methods make it possible to treat the stabilization around other types of trajectories such as periodic orbits.
Auteur(s)
-
Jean LÉVINE : Mines Paris Tech, centre Automatique et Systèmes
-
Pierre ROUCHON : Mines Paris Tech, centre Automatique et Systèmes
INTRODUCTION
Dans ce dossier, nous allons tenter de montrer comment la théorie des systèmes dynamiques fournit, d'une part, des outils très utiles à la synthèse de contrôleurs stabilisants (théorie des perturbations, commande hiérarchisée, synthèse Lyapounov) et, d'autre part, un guide théorique précieux pour l'analyse de la stabilité et de la robustesse des systèmes non linéaires en boucle fermée (stabilité au sens de Lyapounov, bifurcations, théorie de Poincaré- Bendixon pour les systèmes plans, moyennisation).
Nous avons restreint le propos à la stabilisation de points d'équilibre, mais des méthodes de même nature permettent de traiter la stabilisation autour d'autres types de trajectoires comme les orbites périodiques.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Automatique et ingénierie système
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Existence des solutions et problème de Cauchy
La simulation en boucle ouverte (respectivement en boucle fermée) consiste à calculer (en général numériquement, voir § 1) la loi horaire de l'état x (t ) (respectivement (x (t ), ξ (t ))) à partir de la connaissance de l'état x 0 (respectivement (x 0, ξ 0)) et des lois horaires des entrées u (t ) et w (t ) (respectivement v (t ) et w (t )).
La principale hypothèse pour laquelle une telle solution existe pour des temps proches de 0 et est unique porte sur la dépendance de f (respectivement f et a) par rapport à l'état. D'une part, cette dépendance doit être plus que simplement continue, elle doit être lipschitzienne ; c'est-à-dire, pour chaque état x, il existe K > 0 tel que, pour tout z proche de x, on ait :
(K peut dépendre de u et w)
Le résultat d'existence et d'unicité est connu sous le nom de théorème de Cauchy-Lipschitz (voir Systèmes dynamiques et commande[11] et Systèmes dynamiques et commande[14] pour un énoncé précis).
On peut cependant vérifier, grâce aux exemples qui suivent, que la condition sur f est importante et que la solution peut ne plus exister pour des temps trop grands :
-
l'équation admet deux solutions distinctes partant de x 0 ≥ 0 :...
Cet article fait partie de l’offre
Automatique et ingénierie système
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Existence des solutions et problème de Cauchy
BIBLIOGRAPHIE
-
(1) - ABRAHAM (R.H.), SHAW (C.D.) - Dynamics – The Geometry of Behavior : I-IV. - Aerial Press, Santa Cruz, California (1981).
-
(2) - ABRAMOWITZ (M.), STEGUN (I.A.) - Handbook of Mathematical Functions. - Dover, New York (1965).
-
(3) - ANGOT (A.) - Compléments de mathématiques. - Éditions de la revue d'optique, Paris, third edition (1957).
-
(4) - ARNOLD (V.) - Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires. - Mir Moscou (1980).
-
(5) - BERGÉ (P.), POMEAU (Y.), VIDAL (Ch.) - L'ordre dans le chaos. - Hermann, Paris (1984).
-
(6) - FILIPPOV (A.F.) - Differential Equations with Discontinuous Righthand Sides. - Kluwer Academic Publishers, Dordrecht, Boston, London (1988).
- ...
ANNEXES
Cet article fait partie de l’offre
Automatique et ingénierie système
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive