Présentation
En anglaisRÉSUMÉ
Cet article tente de montrer comment la théorie des systèmes dynamiques fournit, d'une part, des outils très utiles à la synthèse de contrôleurs stabilisants (théorie des perturbations, commande hiérarchisée, synthèse Lyapounov) et, d'autre part, un guide théorique précieux pour l'analyse de la stabilité et de la robustesse des systèmes non linéaires en boucle fermée (stabilité au sens de Lyapounov, bifurcations, théorie de Poincaré- Bendixon pour les systèmes plans, moyennisation). Le propos a été restreint à la stabilisation de points d'équilibre, mais des méthodes de même nature permettent de traiter la stabilisation autour d'autres types de trajectoires comme les orbites périodiques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article attempts to show how the theory of dynamic systems provides, on one hand, some very useful tools for synthesizing stabilizing controllers (perturbation theory, hierarchical control, Lyapunov synthesis) and, on the other, a valuable theoretical guide for analyzing the stability and robustness of non-linear closed-loop systems (stability in the Lyapunov sense, bifurcations, Poincaré-Bendixson theorem for flat systems, averaging). The scope has been restricted to the stabilization of equilibrium points, but similar methods make it possible to treat the stabilization around other types of trajectories such as periodic orbits.
Auteur(s)
-
Jean LÉVINE : Mines Paris Tech, centre Automatique et Systèmes
-
Pierre ROUCHON : Mines Paris Tech, centre Automatique et Systèmes
INTRODUCTION
Dans ce dossier, nous allons tenter de montrer comment la théorie des systèmes dynamiques fournit, d'une part, des outils très utiles à la synthèse de contrôleurs stabilisants (théorie des perturbations, commande hiérarchisée, synthèse Lyapounov) et, d'autre part, un guide théorique précieux pour l'analyse de la stabilité et de la robustesse des systèmes non linéaires en boucle fermée (stabilité au sens de Lyapounov, bifurcations, théorie de Poincaré- Bendixon pour les systèmes plans, moyennisation).
Nous avons restreint le propos à la stabilisation de points d'équilibre, mais des méthodes de même nature permettent de traiter la stabilisation autour d'autres types de trajectoires comme les orbites périodiques.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Automatique et ingénierie système
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Bifurcation de point d'équilibre
7.1 Dynamique centrale
Lorsque les valeurs propres de la matrice Jacobienne sont, pour partie, à partie réelle négative avec d'autres sur l'axe imaginaire, on ne peut plus conclure en ce qui concerne la stabilité de l'équilibre . Cette dernière va dépendre des termes d'ordre supérieur dans le développement limité évoqué ci-dessus. On va citer les principaux outils pour étudier la stabilité d'un équilibre dont une partie des valeurs propres se trouve sur l'axe imaginaire (on parle de partie centrale).
-
Dans un premier temps, on sépare la partie de la dynamique associée aux valeurs propres à partie réelle strictement négative de celle associée aux valeurs propres à partie réelle nulle. Pour cela, on fait appel à la théorie des « espaces invariants » (on parle aussi de « variétés invariantes »). L'espace rentrant (on dit aussi stable) correspond aux valeurs propres à partie réelle strictement négative et l'espace central à celles qui sont sur l'axe imaginaire. La stabilité est alors celle de la restriction de la dynamique à cet espace central.
Par exemple, pour le système de dimension 2 donné par :
avec fi (0, 0) ≥ 0, i ≥ 1, 2, , i, j ≥ 1, 2, on constate que (0, 0) est un point d'équilibre, et que le linéaire tangent au point (0, 0) a pour matrice , dont les valeurs propres sont – 1 et 0.
La dynamique de x 1 étant stable, elle converge pour tout x 2 fixé vers...
Cet article fait partie de l’offre
Automatique et ingénierie système
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Bifurcation de point d'équilibre
BIBLIOGRAPHIE
-
(1) - ABRAHAM (R.H.), SHAW (C.D.) - Dynamics – The Geometry of Behavior : I-IV. - Aerial Press, Santa Cruz, California (1981).
-
(2) - ABRAMOWITZ (M.), STEGUN (I.A.) - Handbook of Mathematical Functions. - Dover, New York (1965).
-
(3) - ANGOT (A.) - Compléments de mathématiques. - Éditions de la revue d'optique, Paris, third edition (1957).
-
(4) - ARNOLD (V.) - Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires. - Mir Moscou (1980).
-
(5) - BERGÉ (P.), POMEAU (Y.), VIDAL (Ch.) - L'ordre dans le chaos. - Hermann, Paris (1984).
-
(6) - FILIPPOV (A.F.) - Differential Equations with Discontinuous Righthand Sides. - Kluwer Academic Publishers, Dordrecht, Boston, London (1988).
- ...
ANNEXES
Cet article fait partie de l’offre
Automatique et ingénierie système
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive