Présentation
EnglishRÉSUMÉ
Cet article présente une introduction à l'analyse et à la conception de systèmes à convergence rapide. L'attention principale est portée sur les dynamiques convergentes à temps fini et à temps fixe. Deux grands groupes d'approches d'analyse et de synthèse pour ce type de convergence sont décrits : celles basées sur les fonctions de Lyapunov et celles reposant la théorie des systèmes homogènes. Certains algorithmes de contrôle et d'estimation populaires,
qui possèdent de telles propriétés de convergence accélérés, sont revus. Les problèmes de discrétisation des systèmes convergents à temps fini/fixe sont
discutés. Tous les résultats sont illustrés par des exemples simples (scalaires ou planaires).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Denis EFIMOV : Chercheur - Inria, Univ. Lille, CNRS, UMR 9189 – CRIStAL, F-59000 Lille, France
-
Andrey POLYAKOV : Chercheur - Inria, Univ. Lille, CNRS, UMR 9189 – CRIStAL, F-59000 Lille, France
INTRODUCTION
La théorie du contrôle est utilisée pour concevoir les régulateurs des systèmes dynamiques, pour estimer les variables d’état internes ou les paramètres des installations, pour surveiller et détecter les défauts, dans de nombreux domaines de l’ingénierie, des sciences techniques ou naturelles. Les exigences de qualité importantes, qui sont associées à ces conceptions, concernent le temps de convergence des erreurs d’estimation ou de contrôle vers zéro, et leur robustesse par rapport aux perturbations non modélisées et aux bruits de mesure, ou aux retards d’actionnement ou de détection. À cette fin, les concepts de convergence en temps fini ou en temps fixe montrent leur importance, car l’imposition de ces contraintes d’accélération à la dynamique en boucle fermée implique également des caractéristiques de robustesse remarquables de ces systèmes. Cet article fournit les motivations de base, les définitions des propriétés des systèmes convergents à temps fini et à temps fixe, avec la conception correspondante des commandes et des observateurs d’état. Une attention particulière est accordée à la mise en œuvre en temps discret de ce type d’algorithmes, ce qui est particulièrement difficile. L’exposé est accompagné d’exemples simples illustratifs.
MOTS-CLÉS
Contrôle automatique Estimation d'état Stabilité en temps fini Stabilité à temps fixe Systèmes homogènes
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Conclusion
Cet article est consacré à une brève introduction au sujet de la stabilisation et de l’estimation à temps fini/fixe dans les systèmes dynamiques. À partir d’exemples pratiques, les définitions formelles de divers concepts de stabilité et de stabilité robuste ont été données avec leurs caractérisations à l’aide de la méthode de la fonction de Lyapunov, établissant la base pour détecter et imposer ces taux de convergence dans différents scénarios pratiques d’analyse ou de conception de contrôle. La théorie des systèmes homogènes a été présentée car elle constitue un cadre solide et utile pour l’analyse et la conception de systèmes dynamiques possédant des taux de convergence accélérés et robustes à diverses perturbations. Des exemples d’algorithmes de contrôle stabilisant et d’estimation d’état ont été donnés pour les systèmes linéaires. L’application de la méthode implicite de la fonction de Lyapunov nous a permis de formuler les règles de tuning à l’aide de routines calculables basées sur la solution d’inégalités matricielles linéaires. Les questions de mise en œuvre et de simulation en temps discret de ce type de systèmes ont été discutées. Comme nous l’avons vu, en raison de la forte non-linéarité de la dynamique accélérée en boucle fermée, l’utilisation des outils standard et les plus simples, comme la méthode d’Euler, peut ne pas garantir une performance souhaitable, alors des approches spéciales de discrétisation doivent être synthétisées. De nombreux résultats dans ce domaine n’ont bien sûr pas été mentionnés dans cet article en raison du manque d’espace, et le lectorat intéressé est invité à parcourir des enquêtes plus détaillées et plus spécifiques existant dans la littérature ...
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - ROXIN (E.) - On finite stability in control systems. - Rendiconti del Circolo Matematico di Palermo, 15:273–283 (1966).
-
(2) - POLYAKOV (A.) - Nonlinear feedback design for fixed-time stabilization of linear control systems. - IEEE Transactions on Automatic Control, 57 (8) : 2106–2110 (2012).
-
(3) - ERUGIN (N.) - On the continuouation of solutions of differential equations (in russian). - Prikl. Mat. Mekh., 17 (4) (1951).
-
(4) - BHAT (S.), BERNSTEIN (D.) - Finite time stability of continuous autonomous systems. - SIAM J. Control Optim., 38 (3) : 751–766 (2000).
-
(5) - ZUBOV (V.I.) - Methods of A.M. Lyapunov and Their Applications. - Noordhoff, Leiden (1964).
-
(6) - KHOMENUK (V.V.) - On systems of ordinary differential equations with generalized homogenous...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Homogeneous Control Systems Toolbox for MATLAB,
https://gitlab.inria.fr/polyakov/hcs-toolbox-for-matlab
HAUT DE PAGE
International Workshop on Variable Structure Systems
IFAC World Congress
IEEE Conference on Decision and Control
European Control Conference
HAUT DE PAGEDocumentation – Formation – Séminaires (liste non exhaustive)
Polyakov, A., Upgrading Linear Controllers : Method of Generalized Homogenization
https://www.quanser.com/events-webinars/upgrading-linear-pid-controllers
Fridman L., Sliding Mode Controllers : Stages of Evolution,
https://www.quanser.com/events-webinars/hardware-and-digital-platforms-for-teaching-2/
Input-to-State Stability and its Applications
https://researchseminars.org/seminar/ISS-Theory
Laboratoires – Bureaux d’études – Écoles – Centres de recherche (liste non exhaustive)LS2N CNRS, http://www.ls2n.fr
Centre...
Cet article fait partie de l’offre
Automatique et ingénierie système
(139 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive