Présentation
En anglaisRÉSUMÉ
Cet article est consacré au Transistor à Haute Mobilité Electronique (HEMT) à base de GaN dont le fonctionnement, la structure épitaxiale et les limitations physiques et thermiques sont analysés. Il décrit les différentes étapes technologiques et les variantes possibles pour un fonctionnement à haute fréquence ainsi que les méthodes de caractérisation électrique, thermique et en puissance hyperfréquence. Les principales applications sont abordées: l’amplification de puissance hyperfréquence de la bande S à la bande W, les commutateurs dédiés aux convertisseurs pour l’électronique de puissance et les amplificateurs faible bruit robustes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article concerns the GaN-based High Electron Mobility Transistor (HEMT), and analyzes its device structure, epitaxy, and physical and thermal limitations. It describes the different technological steps and the possible variants for high frequency operation, together with the methods of electrical, thermal and microwave power characterization. The main applications are explained: microwave power amplification from the S band to the W band, switches dedicated to converters for power electronics, and robust low-noise amplifiers.
Auteur(s)
-
Jean-Claude DE JAEGER : Professeur à l’Université de Lille 1 – Sciences et Technologies - Responsable du groupe Composants et Dispositifs Microondes de Puissance à l’Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Villeneuve-d’Ascq, France
INTRODUCTION
Le monde des semi-conducteurs est dominé, en termes de marché, par le silicium. Cependant, il existe d’autres semi-conducteurs tels que le germanium, mais surtout les semi-conducteurs III-V, qui permettent d’obtenir de meilleures performances dans des domaines spécifiques d’applications. Les principaux sont le GaAs et l’InP, et plus récemment les semi-conducteurs dit grand gap, tels que le SiC et le GaN avec des gaps respectifs de 3,2eV et 3,4eV. Ces semi-conducteurs permettent de réaliser des composants qui allient tensions de claquage et courants élevés, ce qui les destinent aux applications de puissance. Cet article traite les aspects liés à la réalisation technologique des transistors et leur caractérisation électrique et hyperfréquence.
En ce qui concerne la technologie des HEMTs, différentes étapes sont nécessaires à partir d’une lithographie électronique : les marques d’alignement qui correspondent à des points de repère sur l’échantillon afin d’aligner et d’écrire les différents niveaux de masque ; les contacts ohmiques qui peuvent être recuits ou non alliés ; l’isolation des composants obtenue soit à partir d’une structure mésa, soit par implantation ionique ; la réalisation des électrodes de grille constituant une de étapes les plus critiques pour la montée en fréquence ; la passivation du composant précédée d’un prétraitement afin d’améliorer l’interface ; l’interconnexion et enfin les ponts à air pour les composants ayant plus de deux doigts de grille. Pour obtenir des transistors fonctionnant à des fréquences élevées, il est impératif de diminuer les éléments parasites, aussi différents types de grille ont été proposés : en T ou champignon, en Γ, en TT ou en Y. Il faut également réduire les dimensions, aussi la technologie auto-alignée constitue une alternative intéressante. Les transistors HEMTs doivent être caractérisés en régime électrique et en hyperfréquence. Ceci permet d’établir la qualité des contacts ohmiques, de déterminer les performances en tension et en courant, la transconductance, et les performances en fréquence via la mesure des paramètres S. Les performances en puissance sont quant à elles déterminées à partir de mesures de type load pull.
Les HEMTs de la filière GaN sont surtout destinés à l’application de puissance hyperfréquence et à la conception de commutateurs pour les convertisseurs en électronique de puissance. Les applications de puissance hyperfréquence concernent les domaines militaires et civils dédiés aux télécommunications, pour des fréquences de fonctionnement allant de la bande S à la bande W. Les principales applications concernent les radars civils et militaires. Dans le domaine militaire, on peut également citer les brouilleurs et les autodirecteurs de missiles. Dans le domaine des télécommunications, les applications sont les liaisons point à point et point à multipoints, les liaisons satellitaires, les liaisons du réseau de transport (backhauling) jusqu’à 85GHz. Les potentialités de la technologie GaN laissent également présager la possibilité de développer des amplificateurs faible bruit dit « robustes », présentant un facteur de bruit et un gain identiques à ceux obtenus par la technologie GaAs, tout en étant capable de résister à des champs électriques élevés, ce qui peut permettre la suppression des limiteurs dans les chaînes de réception radar. La dernière application concerne les convertisseurs pour l’électronique de puissance où on allie une grande robustesse diélectrique, une densité de courant élevée, la possibilité de commutation rapide, une faible résistance Ron et la capacité de supporter des températures de fonctionnement élevées. Pour cet objectif, il est impératif de développer des HEMTs normalement bloqués.
En fin d'article, le lecteur trouvera un glossaire des termes utilisés et un tableau de sigles et symboles.
KEYWORDS
gallium nitride | HEMT | transistor technological steps | power applications
VERSIONS
- Version courante de juil. 2024 par Jean-Claude DE JAEGER
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Glossaire
ligne coplanaire ; coplanar wave guide
Ligne constituée de trois rubans métalliques placés sur le même plan, le conducteur central véhiculant le signal microonde. Les deux rubans latéraux servent de plans de masse et sont séparés du signal par des fentes coplanaires.
ligne microruban ; microstrip wave guide
Ligne constituée d'un ruban conducteur placé sur une face d'un matériau diélectrique dont l'autre face constitue un plan de masse.
circuit intégré monolithique hyperfréquence ou MMIC ; Monolithic Microwave Integrated Circuit
Type de circuit intégré fonctionnant aux fréquences radio dite microondes (de 300MHz à 300GHz).
lithographie optique ; optical lithography
Procédé de photolithographie commençant par l'application d'une photorésine ensuite exposée à une radiation lumineuse. Lors de cette étape, l'utilisation d'un masque, formé de zones opaques et transparentes, permet de définir le motif que l'on souhaite reproduire sur la plaquette.
lithographie électronique ; electronic lithography
Procédé qui implique un faisceau d'électrons qui doit être adressé précisément pour insoler une résine électrosensible déposée sur un échantillon. Elle permet de dessiner des motifs avec une résolution pouvant aller jusqu'au nanomètre.
Microscope Électronique à Balayage (MEB) ; Scanning Electron Microscopy (SEM)
Technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.
gravure ionique ; Ion BeamEtching (IBE)
Technique qui permet de graver des couches minces par l’utilisation de faisceaux d’ions chargés positivement dans un système à vide poussé.
gravure par ions réactifs en plasma à couplage inductif ; Inductively Coupled Plasma - Reactive Ion Etching (ICP-RIE)
Système de gravure ionique réactive à plasma qui permet de graver profondément (plusieurs micromètres) les semi-conducteurs III-V.
sonde ionique focalisée ; Focused Ion Beam (FIB)
Instrument scientifique qui utilise un faisceau d'électrons focalisés dont le domaine d'applications est la microfabrication de dispositifs à semi-conducteurs.
...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Glossaire
BIBLIOGRAPHIE
-
(1) - CAPPY (A.) - « Propriétés physiques et performances potentielles des composants submicroniques à effet de champ : structures conventionnelles et à gaz d'électrons bidimensionnel ». - Thèse de Doctorat d’État en Sciences Physiques, université de Lille 1 (Décembre 1986).
-
(2) - RIDLEY (B.K.), FOUTZ (B.E.), EASTMAN (L.F.) - « Mobility of electrons in bulk GaN and AlxGa1–xN/GaN heterostructures ». - Physical Review B, vol. 61, no. 24, pp. 16862-16869 (June 2000).
-
(3) - GIACOLETTO (L.J.) - « Diode and transistor equivalent circuits for transient operation ». - IEEE Journal of Solid-State circuits, vol. 4, pp. 80-83 (April 1969).
-
(4) - YUE (Y.), HU (Z.), GUO (J.), RODRIGUEZ (B.S.), LI (G.), WANG (R.), FARIA (F.), FANG (T.), SONG (B.), GAO (X.), KOSEL (T.), SNIDER (G.), FAY (P.), JENA (D.), XING (H.) - « In AlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz ». - IEEE, Electron Device Letters, vol. 33, n° 7, pp. 988-990 (July 2012).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
International Conference on Nitride semiconductors (ICNS)
La prochaine (12e) a lieu à Strasbourg en juillet 2017.
European Microwave Week (EuMW)
La prochaine a lieu à Nuremberg, Allemagne en octobre 2017.
IEEE International Electron Devices Meeting (IEDM)
La prochaine a lieu à San Francisco, USA en décembre 2017.
https://www.ieee.org/conferences
International Microwave Symposium (IMS)
La prochaine a lieu à Honolulu Hawai, USA en Juin 2017.
Compound Semiconductor Integrated Circuit Symposium (CSICS)
La prochaine a lieu à Miami, USA en Octobre 2017.
Journées Nationale Microondes
La prochaine a lieu à Saint-Malo en mai 2017.
https://jnm2017.sciencesconf.org/
...Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive