Présentation
EnglishRÉSUMÉ
Cet article est consacré au Transistor à Haute Mobilité Electronique (HEMT) à base de GaN dont le fonctionnement, la structure épitaxiale et les limitations physiques et thermiques sont analysés. Il décrit les différentes étapes technologiques et les variantes possibles pour un fonctionnement à haute fréquence ainsi que les méthodes de caractérisation électrique, thermique et en puissance hyperfréquence. Les principales applications sont abordées: l’amplification de puissance hyperfréquence de la bande S à la bande W, les commutateurs dédiés aux convertisseurs pour l’électronique de puissance et les amplificateurs faible bruit robustes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Claude DE JAEGER : Professeur à l’Université de Lille 1 – Sciences et Technologies - Responsable du groupe Composants et Dispositifs Microondes de Puissance à l’Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Villeneuve-d’Ascq, France
INTRODUCTION
Le monde des semi-conducteurs est dominé, en termes de marché, par le silicium. Cependant, il existe d’autres semi-conducteurs tels que le germanium, mais surtout les semi-conducteurs III-V, qui permettent d’obtenir de meilleures performances dans des domaines spécifiques d’applications. Les principaux sont le GaAs et l’InP, et plus récemment les semi-conducteurs dit grand gap, tels que le SiC et le GaN avec des gaps respectifs de 3,2eV et 3,4eV. Ces semi-conducteurs permettent de réaliser des composants qui allient tensions de claquage et courants élevés, ce qui les destinent aux applications de puissance. Cet article traite les aspects liés à la réalisation technologique des transistors et leur caractérisation électrique et hyperfréquence.
En ce qui concerne la technologie des HEMTs, différentes étapes sont nécessaires à partir d’une lithographie électronique : les marques d’alignement qui correspondent à des points de repère sur l’échantillon afin d’aligner et d’écrire les différents niveaux de masque ; les contacts ohmiques qui peuvent être recuits ou non alliés ; l’isolation des composants obtenue soit à partir d’une structure mésa, soit par implantation ionique ; la réalisation des électrodes de grille constituant une de étapes les plus critiques pour la montée en fréquence ; la passivation du composant précédée d’un prétraitement afin d’améliorer l’interface ; l’interconnexion et enfin les ponts à air pour les composants ayant plus de deux doigts de grille. Pour obtenir des transistors fonctionnant à des fréquences élevées, il est impératif de diminuer les éléments parasites, aussi différents types de grille ont été proposés : en T ou champignon, en Γ, en TT ou en Y. Il faut également réduire les dimensions, aussi la technologie auto-alignée constitue une alternative intéressante. Les transistors HEMTs doivent être caractérisés en régime électrique et en hyperfréquence. Ceci permet d’établir la qualité des contacts ohmiques, de déterminer les performances en tension et en courant, la transconductance, et les performances en fréquence via la mesure des paramètres S. Les performances en puissance sont quant à elles déterminées à partir de mesures de type load pull.
Les HEMTs de la filière GaN sont surtout destinés à l’application de puissance hyperfréquence et à la conception de commutateurs pour les convertisseurs en électronique de puissance. Les applications de puissance hyperfréquence concernent les domaines militaires et civils dédiés aux télécommunications, pour des fréquences de fonctionnement allant de la bande S à la bande W. Les principales applications concernent les radars civils et militaires. Dans le domaine militaire, on peut également citer les brouilleurs et les autodirecteurs de missiles. Dans le domaine des télécommunications, les applications sont les liaisons point à point et point à multipoints, les liaisons satellitaires, les liaisons du réseau de transport (backhauling) jusqu’à 85GHz. Les potentialités de la technologie GaN laissent également présager la possibilité de développer des amplificateurs faible bruit dit « robustes », présentant un facteur de bruit et un gain identiques à ceux obtenus par la technologie GaAs, tout en étant capable de résister à des champs électriques élevés, ce qui peut permettre la suppression des limiteurs dans les chaînes de réception radar. La dernière application concerne les convertisseurs pour l’électronique de puissance où on allie une grande robustesse diélectrique, une densité de courant élevée, la possibilité de commutation rapide, une faible résistance Ron et la capacité de supporter des températures de fonctionnement élevées. Pour cet objectif, il est impératif de développer des HEMTs normalement bloqués.
En fin d'article, le lecteur trouvera un glossaire des termes utilisés et un tableau de sigles et symboles.
VERSIONS
- Version courante de juil. 2024 par Jean-Claude DE JAEGER
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Caractérisation des transistors de type HEMT
Après fabrication, les transistors de type HEMT de la filière GaN dédiés aux applications de puissance sont mesurés en utilisant différentes techniques. Dans ce but, lors de la réalisation d’un jeu de masques, outre les transistors, on inclut différents motifs de tests, permettant de caractériser le bon déroulement du procédé de fabrication (respect des dimensions, rendement, valeurs des paramètres électriques…).
3.1 Caractérisation électrique en régimes statique et impulsionnel
3.1.1 Grandeurs électriques en régime statique
La caractérisation des composants en régime statique est basée sur la détermination de la caractéristique de sortie I DS − V DS pour différentes valeurs de la tension V GS, et la caractéristique de transfert I DS − V GS pour différentes valeurs de V DS en régime de saturation du transistor. À partir de cette dernière caractéristique, il est possible de déduire la transconductance g m du transistor.
Les figures 29 a et 29 b représentent les caractéristiques I DS(V DS), ainsi que g m(V GS) et I DS(V GS) pour un HEMT AlGaN/GaN sur substrat Si (111) hautement résistif.
La caractéristique courant de grille I g en fonction de la tension de grille V GS permet de déterminer les caractéristiques du contact de grille Schottky, à savoir la hauteur de barrière en direct et le coefficient d’idéalité, ainsi que le courant de fuite en inverse et le rapport des courants I ON/ I OFF du transistor.
HAUT DE PAGE3.1.2 Caractérisation en régime impulsionnel
La caractérisation en régime impulsionnel consiste...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Caractérisation des transistors de type HEMT
BIBLIOGRAPHIE
-
(1) - CAPPY (A.) - « Propriétés physiques et performances potentielles des composants submicroniques à effet de champ : structures conventionnelles et à gaz d'électrons bidimensionnel ». - Thèse de Doctorat d’État en Sciences Physiques, université de Lille 1 (Décembre 1986).
-
(2) - RIDLEY (B.K.), FOUTZ (B.E.), EASTMAN (L.F.) - « Mobility of electrons in bulk GaN and AlxGa1–xN/GaN heterostructures ». - Physical Review B, vol. 61, no. 24, pp. 16862-16869 (June 2000).
-
(3) - GIACOLETTO (L.J.) - « Diode and transistor equivalent circuits for transient operation ». - IEEE Journal of Solid-State circuits, vol. 4, pp. 80-83 (April 1969).
-
(4) - YUE (Y.), HU (Z.), GUO (J.), RODRIGUEZ (B.S.), LI (G.), WANG (R.), FARIA (F.), FANG (T.), SONG (B.), GAO (X.), KOSEL (T.), SNIDER (G.), FAY (P.), JENA (D.), XING (H.) - « In AlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz ». - IEEE, Electron Device Letters, vol. 33, n° 7, pp. 988-990 (July 2012).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
International Conference on Nitride semiconductors (ICNS)
La prochaine (12e) a lieu à Strasbourg en juillet 2017.
European Microwave Week (EuMW)
La prochaine a lieu à Nuremberg, Allemagne en octobre 2017.
IEEE International Electron Devices Meeting (IEDM)
La prochaine a lieu à San Francisco, USA en décembre 2017.
https://www.ieee.org/conferences
International Microwave Symposium (IMS)
La prochaine a lieu à Honolulu Hawai, USA en Juin 2017.
Compound Semiconductor Integrated Circuit Symposium (CSICS)
La prochaine a lieu à Miami, USA en Octobre 2017.
Journées Nationale Microondes
La prochaine a lieu à Saint-Malo en mai 2017.
https://jnm2017.sciencesconf.org/
...Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive