Overview
Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.
Read the articleAUTHORS
-
Philippe MORETTO: Professor at the University of Bordeaux 1 Centre d'études nucléaires de Bordeaux-Gradignan
-
Lucile BECK: Teacher-researcher at the Institut des sciences et techniques nucléaires Commissariat à l'énergie atomique (Saclay, France)
INTRODUCTION
The purpose of this article is to provide the practical information needed to implement the PIXE analysis technique, the theoretical foundations of which have already been explained (article In principle, it's easy to use, since all that's required is to place a sample in the beam, without any special preparation apart from vacuum bagging, to obtain a qualitative composition in just a few minutes. In reality, to obtain precise quantitative results and optimize sensitivity, a number of experimental precautions need to be taken with regard to the shape of the sample (solid, powder deposited in a thin layer or sintered, dehydrated or pre-concentrated liquid), its physical characteristics (conductivity, surface state, etc.) and, finally, the type of beam used (ion, energy, flux) as well as the analysis geometry. In recent years, the vacuum constraint has even been lifted, as air-extracted beams are now available, making it possible, among other things, to analyze very bulky objects at atmospheric pressure, particularly in the field of art. All these aspects will be developed in the "Instrumentation" section.
The next chapter will focus on the processing required to express concentrations from experimental results. Current codes for deconvolving X-ray fluorescence spectra can be used to resolve most thin-target situations, and to obtain absolute quantitative results without using standard samples. X-ray emission yields are well known, as is the response of semiconductor detectors. These codes also make it possible to work with thick targets, where matrix effects in the form of projectile slowdown and attenuation of emitted X-rays come into play. These phenomena can be modelled quite simply, and thick-target analysis is increasingly used in cases where no alternative is possible.
Thanks to its multi-elemental nature, the microbeam method can map more than a dozen elements in the same analysis, with scan dimensions ranging from 20 µm to 2 mm and optimum spatial resolution of the order of a few hundred nanometers. The use of such beamlines is described in this treatise (article
Some examples of applications in disciplines as diverse as life and environmental sciences, earth sciences, materials sciences, archaeometry... are presented in the last part of the article.
The theoretical underpinnings of the method were presented in the article .
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
This article is included in
Analysis and Characterization
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Charged particle-induced X-ray emission (PIXE): applications
Bibliography
Works
Processing software
There are around ten PIXE spectrum processing software packages, most of them developed by research laboratories. They are either based on deconvolution with calculation of peak areas, or on fitting a simulated spectrum to the experimental spectrum. They all enable concentrations to be calculated. Seven programs, Geopixe
Conferences
International Conference on Nuclear Microprobe Technology and Applications (ICNMTA), whose proceedings are published every two years.
International Conference on PIXE and its analytical applications, held every 3 years and devoted entirely to the PIXE technique.
International Conference on Ion Beam Analysis, held every 2 years.
European Conference on...
Facilities and specialized laboratories in France
(non-exhaustive list)
Table 2 (from ) gives some information...
Gas pedal manufacturers
HighVoltage Engineering B.V. (HVEE) Amersfoort, The Netherlands http://www.highvolteng.com
National Electrostatics Corp (NEC) Middleton, USA http://www.pelletron.com/
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference