Article | REF: J2611 V1

Distillation of non ideal mixtures

Authors: Vincent GERBAUD, Ivonne RODRIGUEZ-DONIS

Publication date: September 10, 2010, Review date: March 1, 2015

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

This article presents the theoretical and practical elements allowing for the design of extractive or azeotropic distillation units for the separation of non-ideal mixtures. Residue curves, which can be measured or calculated, describe the evolution of the composition of an evaporating liquid over time. They can be compared to the composition profile of a continuous distillation column operating at total reflux. Pure and azeotropic bodies are the singular points of diagrams and their stability is linked to their boiling point within a distillation region circumscribed by the distillation boundaries, which allows for the rapid design of distillation units. The single-volatility curves determine the regions of order of volatility in composition and therefore the most volatile compounds that can be distilled. To conclude, single-distribution curves allow for the rapid drawing of residue curves.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHORS

  • Vincent GERBAUD: Chemical engineering engineer from École nationale supérieure d'ingénieurs de génie chimique ENSIGC - Doctorate in Process Engineering from INPT - CNRS Research Fellow, Chemical Engineering Laboratory, Toulouse

  • Ivonne RODRIGUEZ-DONIS: Chemical engineer from the University of Havana, Cuba - Doctorate in Process Engineering from INPT - Researcher at the Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), Cuba

 INTRODUCTION

The aim of this dossier is to present the theoretical and practical elements required to design distillation units for the separation of non-ideal mixtures.

Broadly speaking, there are three main classes of problems in separating an A-B mixture by distillation:

  • 1. distillation of ideal mixtures (see box);

  • 2. azeotropic distillation, which involves adding a third body E, called the entrainer, to the charge to be distilled;

  • 3. extractive distillation, which also involves the addition of an E-carrier, but which is fed continuously during certain stages of the process.

More often than not, a distillation mixture of two substances A-B behaves in a non-ideal way, as it may form an azeotrope or have a relative volatility close to unity. However, it is impossible to separate an azeotropic mixture in a conventional distillation column, as the azeotrope behaves like a pure body and is obtained at the top or bottom of the column, depending on its boiling temperature, instead of the pure bodies of the mixture, A or B. To remedy this, we can add a third body (called a solvent or entrainer, noted E) which has a more pronounced affinity for one of the constituents of the azeotropic mixture than for the other, so as to "entrain/extract" the first with it.

As indicated in [J 1 072] Material transfer. Ideal compartmental distillation, the main question in azeotropic or extractive distillation is the choice of the third body. This file [J 2 611] and the following one [J 2 612] provide the theoretical and practical elements to answer this question. Theoretical tools for the design of azeotropic and extractive distillation units mainly concern the analysis of the thermodynamic properties of mixtures, particularly residue, univolatility and unidistribution curves. In ternary diagrams, in particular A-B-E, it can also be performed graphically.

...
You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Unit operations. Chemical reaction engineering

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Distillation of non-ideal mixtures