Overview
FrançaisABSTRACT
This article describes the key stages in additive manufacturing using fused filament fabrication. It shows that heating and melting are a compromise between heat transfer from the extruder and polymer transport. Pressure drop and the force required for extrusion are reported. The morphology of extruded threads depends on extrusion and printing velocities, the distance between the nozzle and the deposit, and the nozzle diameter. Post-deposition cooling and the crystallization of semi-crystalline polymers are studied. Thread-to-thread interactions are presented, focusing on cooling and welding.
Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.
Read the articleAUTHOR
-
Franck PIGEONNEAU: Research Director - Mines Paris, Université PSL, Centre de mise en forme des matériaux (CEMEF), UMR CNRS 7635, Sophia Antipolis, France
INTRODUCTION
According to the NF EN ISO/ASTM 52900 standard, additive manufacturing (AM) encompasses technologies enabling parts to be manufactured using successive layers of material based on a digital model. First used in the late 1980s to produce prototypes, FA is now used for most parts in everyday use or in high-tech applications. It can be applied to metals, ceramics, polymers, concrete and, more recently, glass. Its field of application is growing all the time, enabling us to produce parts for cutting-edge sectors such as aeronautics, the automotive industry and healthcare.
Of all AF techniques, 3D printing using plastic extrusion accounts for a large share of the market. Known as Fused Deposition Modelling (FDM) or Fused Filament Fabrication (FFF), it is fairly easy to implement and requires moderate energy and material (thermoplastic polymer) and acquisition costs. Nevertheless, properties (mechanical, thermal) remain below those of products shaped by more conventional methods. In order to improve these properties and extend the range of applications even further, the operation of DFF printers needs to be studied in greater depth. The aim of this article is therefore to detail the key stages of the process, drawing on the first principles of physics and process engineering.
Having outlined the process in section 1 , the way in which the polymer melts in the extruder is described in section 2 . Filament deposition will then be studied in section 3, where its morphology, cooling and crystallization will be discussed. At the end of these two sections, perspectives on the FDM process will be proposed.
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
KEYWORDS
extrusion | 3D printing | semi-crystalline polymers | heat transfer | fluid mechanics
This article is included in
Plastics and composites
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Polymer additive manufacturing by fused filament deposition
Bibliography
Software tools
CAD software
FreeCAD (operating systems: Windows, MacOS and Linux): free, fully customizable software.
CREO (operating system: Windows): payware, one of the market leaders specifically dedicated to additive manufacturing.
Fusion 360 (operating systems: Windows, MacOS and Linux): low-cost, pay-as-you-go software, incorporating finite element calculation...
Websites
3D Natives, the 3D printing media
MakerShop, 3D printing guide for beginners
https://www.makershop.fr/content/
42-guide-impression-3d
all3dp
Events
Exhibitions
3D Print Congress & Exhibition October 11-12, 2023, Parc des expositions, Porte de Versailles, Paris,
https://www.3dprint-exhibition-paris.com/
3D Print Congress & Exhibition June 4-6, 2024, Euroexpo, Lyon,
Standards and norms
- Additive manufacturing – General principles – Terminology. - NF EN ISO/ASTM 52900 - 2017
- Industrial automation systems and integration – Numerical control of machines – Program format and address word definitions – Part 1: Data format for positioning, paraxial motion control and contouring systems. - ISO 6983-1 - 2009
Patents
S. S. CRUMP. Apparatus and method for creating three-dimensional objects. U.S. Pat. US5121329A. 1989. Jun. 9, 1992.
Directory
Manufacturers – Suppliers – Distributors (non-exhaustive list)
3D printer manufacturers
Stratasys,
UltiMaker,
Prusa,
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference