Article | REF: E4152 V1

Geometry of the light rays: from theory towards applications

Authors: Christophe LABBÉ, Benoît PLANCOULAINE

Publication date: May 10, 2020, Review date: September 21, 2022

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

In this paper, the approximation of the geometrical optics, for dioptric and catadioptric systems, is displayed without being limited to the paraxial optics. Moreover, caustics are introduced for the catadioptric systems which naturally lead to the conventional conjugation formulas. Furthermore, theses formulas are approached more traditionally for the dioptric systems. Then, from optical systems conforming to the different symmetries, the light guidance is described through application examples in mediums of constant or variable refractive index.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHORS

  • Christophe LABBÉ: Associate Professor, University of Caen Normandie Université, UNICAEN, IUT de Caen, Département Mesures Physiques, Caen, France Normandie Université, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen, France

  • Benoît PLANCOULAINE: Associate Professor, University of Caen Normandie Université, UNICAEN, IUT de Caen, Département Mesures Physiques, Caen, France Normandie Université, UNICAEN, INSERM, ANTICIPE, Caen, France Faculty of medicine, Vilnius University, Vilnius, Lithuania

 INTRODUCTION

The first section of this article introduces the approximation of geometrical optics, highlighting two complementary approaches: directional and luminous. The first presents Descartes' law in a moving reference frame, while the second highlights the importance of caustics generated by optical systems with the notion of stigmatism. The latter are then developed solely through catacaustics (reflection caustics), leading to the classical relations of spherical mirrors. A third section, on dioptric systems, returns to the consequences of Descartes' law established in the introduction, deducing the formulas for diopters (plane or spherical) illustrated by examples such as the prism or mirages. The final section is still devoted to Descartes' law, but this time in fixed reference frames (cylindrical or spherical coordinates), in order to address the notion of sphericity defect in lenses, and its correction by means of aspherical surfaces. The matrix model of aspherical lenses is then established in paraxial optics. In particular, it verifies the condition of aplanatism. The gradient index property is discussed through the examples of GRIN lenses and optical fibers, and ends with the potential application of spherical lenses (Maxwell, Lüneburg and Eaton-Lippmann lenses).

The entire article is illustrated by numerical examples and industrial applications, and is also intended to be read at several levels, as the reader can browse through the fundamental results or immerse himself in the theoretical demonstrations aided by the boxes for obtaining them.

A table of acronyms and symbols is provided at the end of the article.

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

KEYWORDS

optical fiber   |   geometric optics   |   caustic   |   Descartes' laws   |   dioptric system   |   catadioptric system   |   index gradient lens   |   spherical lens   |   aspherical lens   |   ball lens


This article is included in

Physics and chemistry

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Geometry of light rays